
Springer Nature 2021 LATEX template

Lightweight Convolutional Neural Networks

for Surface Defect Segmentation based on

Neural Architecture Search

Biao Chen1, Tongzhi Niu1*, Yuchen Lin1, Hang
Zhang1, Baohui Liu1 and Miao Wang1

1School of Mechanical Science and Engineering, Huazhong
University of Science and Technology, Street, Wuhan, 430074,

Hubei, China.

*Corresponding author(s). E-mail(s): tzniu@hust.edu.cn;
Contributing authors: u202010899@hust.edu.cn;
yuchenlin@hust.edu.cn; u202010924@hust.edu.cn;
lbhui@hust.edu.cn; m202170809@hust.edu.cn ;

Abstract

Convolutional Neural Networks have achieved impressive performance
in many surface defect inspection tasks over the past years. How-
ever, state-of-art networks become increasingly heavy and expensive,
which limits their deployments in edge or embedded devices in indus-
trial scene. In this paper, we proposed a new solution that auto-
matically designs lightweight convolutional neural networks for sur-
face defect inspection via neural architecture search (Light SDI-NAS).
At first, a search space suitable for industrial applications is pro-
posed by combining experience in neural network architecture design
and preliminary experimental results. Secondly, we design a new loss
to balance the model accuracy and computational efficiency. Finally,
the lightweight network obtained through Light SDI-NAS performs
well on three industrial datasets, showing comparable or even better
results than state-of-art handcraft networks on these datasets, with
the number of parameters greatly being reduced and 1.8 times faster.

Keywords: lightweight neural networks; real-time neural network; surface
defect segmentation; neural architecture search.

1

HUST

Springer Nature 2021 LATEX template

2 Article Title

1 Introduction

In the field of surface defect inspection, deep convolutional neural networks
(DCNNs) have been one of the research hotspots because of its powerful feature
extraction ability and robustness [1] [2] [3] [4] [5]. In general, the impressive
performance of DCNNs depends on the increase of model parameters and the
improvement of computing hardware [6]. However, due to low latency require-
ments, the DCNNs is usually deployed at the edge or embedded devices in
industrial scene [7]. Therefore, realizing high-precision and real-time detection
on limited computing platforms has become one of the most valuable topics in
surface defect detection.

The existing methods of lightweight DCNNs can be mainly divided into
the following categories: 1) model compression. After the networks structure
deigning or training are completed, the model parameters are compressed by
pruning [8] [9] [10], quantization [11] and knowledge distillation [12] [13]. But
model compression is wasteful of computing resources during training. And it is
difficult to balance network parameters and computational efficiency with gen-
eralization and accuracy. Besides, some model compression methods need the
support of special devices to improve inference speed because of the limitations
from sparse matrix. 2) lightweight neural architecture design. Recently, many
lightweight network structures have been designed, such as MobileNet series
[14] [15] [16], ShuffleNet [17], SENet [18], ICNet [19] etc. Nevertheless, most
of these lightweight architectures are designed for natural images rather than
industrial images. These classical network architectures are usually designed
by relevant domain experts for several months or even several years, which is
laborious and time-consuming .

Therefore, we proposed a new solution that automatically designs
lightweight convolutional neural networks for surface defect inspection via
neural architecture search (SDD-NAS). It is non-trivial because the following
two aspect. 1) There are some challenges in surface defect detection. Firstly,
the number of industrial defect images is very small. Secondly, the difference
between the defect area and the normal area is unobvious. Finally, defects vary
in size and have irregular outlines. 2) SDD-NAS must not only achieve high-
precision, but also realize real-time detection on limited computing platforms.
To address above challenges, we focus on search space, search strategy, and
performance estimation strategy.

For search space, the current search space is mainly constructed by a num-
ber of manually selected convolution operations. However, such a construction
method may not be able to select the most suitable convolution operations to
complete the corresponding visual tasks. According to the existing experience,
we initially selected the candidate convolution operation blocks to form the
search space, and then considered the lightweight and other factors for further
selection. Finally, in order to ensure that the candidate convolution opera-
tion blocks can overcome the above challenges of surface defect detection on
the target task, we designed the exploration experiment in Section 3.2.2 and
combined the experimental results to determine the final search space.

HUST

Springer Nature 2021 LATEX template

Article Title 3

16M 32M 40M

0 25 50 75 100 125 150 175 200 225 250

FPS in NEU-inclusion Dataset

40

45

50

55

60

65

70

Io
U

 i
n
 N

E
U

-i
n
cl

u
si

o
n
 D

at
as

et

Deeplab

RefineNet

PGA-Net

PSPNet

Unet

SegNet

Light SDI-NAS

FCN

BiSeNet

The higher the better

T
h
e

h
ig

h
er

 t
h
e

b
et

te
r

Fig. 1 Comparisons with state-of-the-art networks in terms of IoU performance, model
inference FPS and parameters on NEU-inclusion dataset.

For search strategy, the current network structure search methods
are mainly based on reinforcement learning, neuro-evolutionary algorithm,
Bayesian optimization algorithm and gradient. Our goal is to quickly search for
a lightweight network architecture suitable for the task of surface defect seg-
mentation on the corresponding dataset, so we choose gradient-based search
method, which is efficient and easy to implement.

For performance estimation strategy, the existing model performance eval-
uation strategy is mainly realized by testing the performance of the model
on datasets. We choose the gradient-based search method, which can directly
guide the search network through the loss function to get the desired neural
network model architecture. At present, the common loss function mainly aims
at performance improvement. However, in order to search for the neural net-
work model with the best balance between performance and reasoning speed,
we modify the loss function to consider the lightweight of network structure
while optimizing the model performance (See section 3.3 for details).

In this paper, we proposed a lightweight networks design method, called
SDD-NAS, which can search corresponding lightweight networks for different
datasets. Our main contribution is as fallows.

Firstly, combing the experience of neural network architecture design and
preliminary experimental results, we build a suitable search space for surface
defect detection.

Secondly, a loss function that comprehensively considers model accuracy
and lightweight is proposed.

Finally, the lightweight network obtained through operation search per-
forms well on several industrial datasets, showing comparable or even better
results than state-of-art handcraft networks on these datasets. Meanwhile,

HUST

Springer Nature 2021 LATEX template

4 Article Title

the network obtained in the end has significantly fewer parameters, and the
experimental results show that its computation delay is also lower.

2 Related Work

2.1 Lightweight Neural Network Design

While big models can achieve impressive performance, they often come with a
significant amount of computing overhead and memory usage. As a result, an
increasing amount of research is being focused on designing lightweight net-
work architectures that can be used in real-world scenarios. The first work
considering the efficiency of image segmentation was ENet [20], which designed
a feature extraction block with few channels and used the point convolution
in the residual connection layer to reduce the computational consumption.
ICNet [19] was designed for real-time segmentation of high-resolution images,
adopting multi-scale image input and proposing the strategy of cascaded
feature fusion unit and cascaded tag guidance to introduce medium and high-
resolution feature maps and gradually improve accuracy. Another notable
lightweight model for semantic segmentation is BiSeNet [21], which uses a dou-
ble branch architecture, proposes the ARM attention mechanism, and builds
an FFM feature fusion module. These methods have achieved competitive
performance on some datasets under the premise of greatly reduced computa-
tion. However, due to the unique characteristics of industrial datasets, many
of these lightweight networks may be untrainable or ineffective on these types
of datasets.

In conclusion, the research in the field of industrial image segmentation
has yet to strike a good balance between model performance and computation.
Further exploration and development of lightweight network architectures that
are effective on industrial datasets could lead to significant advancements in
this field.

2.2 Neural Architecture Search

Designing a high-performing neural network can be a time-consuming and
laborious process for researchers. Neural Architecture Search (NAS) is a
promising technique for automating the design of neural networks. It involves
defining the search space, search strategy, and performance estimation strat-
egy to efficiently explore a vast space of potential network architectures. The
search space defines which architectures can be represented in principle, while
the search strategy details how to explore the search space, along with that the
Performance Estimation refers to the process of estimating this performance
[22]. Early NAS approaches relied on reinforcement learning algorithms [23]
or evolutionary algorithms, which required extensive computational resources
to train thousands of candidate networks from scratch. However, recent
approaches such as Differentiable Architecture Search (DARTs) [24] and Prox-
yLessNAS [25] have improved the efficiency of the search process by relaxing

HUST

Springer Nature 2021 LATEX template

Article Title 5

the discrete search space into a continuous spatial structure and introducing
structural parameters to learn the redundancy of each path. Other works have
utilized weight sharing strategies to share the search cost by training a sin-
gle over-parameterized hypernetwork and sharing the weight across subnets.
NAS has primarily been used for image classification tasks but has since been
extended to downstream tasks such as semantic segmentation. For instance,
Chen et al. [26] applied NAS to search for a small-sized ASPP called DPC
and fixed the pretrained backbone as an encoder for semantic segmentation.
Nekrasov et al. [27] improved the speed of searching decoders for reinforce-
ment learning strategies by using knowledge distillation and Polyak Averaging
method, enabling the discovery of corresponding image segmentation networks.

2.3 Defect Segmentation

At present, most defect segmentation networks are based on Fully Convolu-
tional Network (FCN) architecture [28]. For example, Dung et al. [29] used
an FCN network based on VGG16 encoder to segment cracks on concrete sur-
face. Li et al. [30] proposed a surface defect segmentation method for concrete
structures using a Unet network with Dense Block modules in the encoder
and pixel-by-pixel summation instead of concatenation for the jump layer
connection. Dong et al. [31] proposed a pyramid feature fusion and global con-
text attention network (PGA-Net) for pixel-wise detection of surface defect.
Although these methods achieved good performance on different defect seg-
mentation datasets, they do not consider network lightweight, resulting in
architectures that are too large to be deployed on mobile devices for practical
applications.

3 Methods

Backbone SuperNet Backbone SuperNet

Search Space Search Strategy

S
tr

u
ct

u
re

 P
ar

am
et

er
s

Backbone SuperNet

S
tr

u
ct

u
re

 P
ar

am
et

er
s

Loss Function

Outputs

Searched Network

Performance Estimation

Searched Network

Train Stage

Operation block

Input or output

Selected path

Unselected path

Search Stage

Fig. 2 Search pipeline of the proposed Lightweight Neural Architecture Search. There are
three parts in search stage: search space, search strategy, and performance estimation. After
search stage, the searched network is going to be trained.

HUST

Springer Nature 2021 LATEX template

6 Article Title

3.1 Overview

As shown in Figure 2, our method is divided into two stages. The first stage is
the search stage, and the second stage is the training stage. In the search stage,
we first build a suitable search space according to the characteristics of surface
defect detection data set, network design experience and exploration exper-
iment (see Section 3.2.3 for details). Then, we introduce network structure
parameters to characterize the importance of every convolutional operation
block in the search space, and use a gradient-based search method to search
the network architecture. Finally, we evaluate the performance of the model
according to the output of the model and the structural parameters as the
input of the loss function, and then search to get the final network architec-
ture. In the training stage, we train and test the network model obtained from
the search stage on the corresponding dataset.

3.2 Search Space

In this section, we will first outline the selection principle for the operation
block used in constructing the search space. We will then describe our finalized
method for selecting the operation block. Finally, we will present the various
convolution operations that we have chosen to include in the search space.

3.2.1 Operation Block Selection Principle

The process of building the search space involves two main steps. First, we
determine the principle for selecting candidate convolution operation blocks.
This involves drawing on existing experience to establish a selection criterion
and identify suitable candidate convolution operations. In the second step, we
construct the search space by selecting the most appropriate convolution oper-
ations from the candidate set. This is done by leveraging our network design
expertise, as well as conducting experimental verification to identify the most
suitable convolution operations for inclusion in the search space. Based on our
designing aims of searching for performance and lightweight optimal balancing
network, we select candidate action blocks based on the following principles.
The first criterion we use for selecting convolution operations is computational
complexity. We prioritize convolution operations with low computational com-
plexity, as there are a variety of lightweight convolution operations currently
available that are highly parameter-efficient while still delivering comparable
performance to ordinary convolution. Examples of such lightweight convolution
operations include depth-wise convolution and depth-wise dilation convolu-
tion. By incorporating these existing lightweight convolution operations into
the search space, we can explore the search network to build lightweight
segmentation networks that are well-suited for industrial images.

The second criterion we use for selecting convolution operations is the abil-
ity to handle multiple receptive fields. Receptive fields are essential for feature
extraction in the network, as different receptive fields enable the network to
extract different features. Given that defects in industrial images vary in size

HUST

Springer Nature 2021 LATEX template

Article Title 7

and have irregular contours, we include convolution operations with different
receptive fields in the search space. Through the search network, we final-
ize the convolution operations with different receptive fields at corresponding
positions, ensuring that the resulting network has better feature extraction
and segmentation abilities for features of multiple scales and is more sensitive
to boundary information. This enables the network to more effectively iden-
tify and classify defects in industrial images, so it can better deal with the
challenge in surface defect detection mentioned in the introduction.

3.2.2 Introduction of Candidate Convolution Blocks and Test
Experiment

Based on the aforementioned selection principles, we have identified seven can-
didate convolution operation blocks for inclusion in the search space. These
are: Single Conv, Double Conv, Single Dilation Conv, Double Dilation Conv,
Double DWconv [14], Double DW-D-Conv [32], and Cutconnect Block. Single
Conv and Double Conv represent a single normal convolution operation block
and a double normal convolution operation block, respectively. Single Dilation
Conv and Double Dilation Conv correspond to single and double dilation con-
volution operation blocks, respectively. Additionally, we have included Double
DWconv, a double depth-wise convolution operation block, and Double DW-
D-Conv, a double depth-wise dilation convolution operation block. Finally, we
have designed a new convolution operation block called Cutconnect Block. The
structure of each convolution operation block is illustrated in Figure 3.

Conv 1×1

Conv 3×3

Concat

Cell output

Search block

Operating

block

single

Conv

single

Dilation

Conv

DWconv
DW-D-

Conv
Cutconnect

inclusion

patch

scratches

Image Groungtruth FCN8s RefineNet PSPNet Deeplab PGA-Net UNet BiSeNet Ours

Operating

block

single Conv double Conv

single

Dilation

Conv

double

Dilation

Conv

DWconv DW-D-Conv Cutconnect

Conv 3×3

Conv 3×3

Conv 3×3
Conv 3×3

Dilation=2

Conv 3×3

Dilation=2

Conv 3×3

Dilation=2

Conv 3×3

Groups=c

Conv 1×1

Conv 3×3

Groups=c

Conv 1×1

Conv 3×3

Dilation=2

groups=c

Conv 1×1

Conv 1×1

(a) (b) (c) (d) (e) (f) (g)

1 2 3 4 5

Inputs

Outputs Downsample

Upsample

Concat

Conv 1x1

Search
block

Conv 3×3

Dilation=2

groups=c

Fig. 3 Structure of convolution operation blocks ((a), (b), (c), (d), (e), (f) and (g) stand
for Single conv, Double conv, Single Dilation conv, Double Dilation conv, Double DWconv,
Double DW-D-Conv and Connect Block respectively.)

Once the candidate operation blocks are selected, we standardize the input
and output dimensions of each convolution operation block to 3x96x96 and

HUST

Springer Nature 2021 LATEX template

8 Article Title

64x96x96, respectively. Then the ptflops [33] library in Python is used to cal-
culate the number of parameters and FLOPs for each operation block. The
results of these experiments are presented in Table 1.

Table 1 Test experimental results of candidate operation blocks. The column called IOU
is the result of the exploration experiment on the NEU-inclusion dataset of every
convolution operation block.

To evaluate the performance of the dilation convolution operation block on industrial

image datasets, we conduct experiments on the NEU-inclusion industrial image

segmentation dataset. Specifically, we replace the original double convolution

operation blocks in UNet with the Single Dilation Conv block and Double Dilation

Conv block, respectively. The results of these experiments are also included in Table 1.

Operation Blocks Name Parameters FLOPs IOU

1 Single Conv 0.01MB 18.28M 65.98

2 Double Conv 0.15MB 359.79M 66.60

3 Single Dilation Conv 0.01MB 18.28M 64.07

4 Double Dilation Conv 0.15MB 359.79M 65.20

5 Double DWconv 0.01MB 11.54M -

6 Double DW-D-Conv 0.02MB 49.82M -

7 Cutconnect Block 0.02MB 59.57M 66.53

Table 1. Test experimental results of candidate operation blocks. The column

called IOU is the result of the exploration experiment on the NEU-inclusion

dataset of the corresponding convolution operation block.

3.2.3 Finalize Search Space

As shown in Table 1, the Double Dilation Conv block do not demonstrate significantly

better performance than the Single Dilation Conv block, but it has much higher

parameters count. Therefore, we choose the Single Dilation Conv block as a part of the

search space and abandon the Double Dilation Conv block. The double ordinary

convolution operation is also excluded due to its high parameter count and

computational complexity.

To increase the diversity of search space, considering that Single Conv block does not

bring high parameter number and computational complexity, we retain this block as a

part of the search space. At the same time, in order to limit the number of network

parameters and computational complexity and obtain a large sensitivity field, two kinds

of convolution operation blocks, called Double DWconv block [mobilenet] and Double

To evaluate the performance of the dilation convolution operation block
on industrial image datasets, we conduct experiments on the NEU-inclusion
industrial image segmentation dataset. Specifically, we replace the original dou-
ble convolution operation blocks in UNet with the Single Dilation Conv block
and Double Dilation Conv block, respectively. The results of these experiments
are also included in Table 1.

3.2.3 Finalize Search Space

As shown in Table 1, the Double Dilation Conv block do not demonstrate sig-
nificantly better performance than the Single Dilation Conv block, but it has
much higher parameters count. Therefore, we choose the Single Dilation Conv
block as a part of the search space and abandon the Double Dilation Conv
block. The double ordinary convolution operation is also excluded due to its
high parameter count and computational complexity. To increase the diver-
sity of search space, considering that Single Conv block does not bring high
parameter number and computational complexity, we retain this block as a
part of the search space. At the same time, in order to limit the number of
network parameters and computational complexity and obtain a large sensi-
tivity field, two kinds of convolution operation blocks, called Double DWconv
block [14] and Double DW-D-Conv block [32], are retained according to the
experimental results of parameter number and FLOPs.

Finally, the Cutconnect Block operation block, which we designed to bet-
ter retain the input feature information and improve the adaptability of the
search network to different datasets, is included in our search space. Therefore,

HUST

Springer Nature 2021 LATEX template

Article Title 9

the final search space consists of Single Conv, Single Dilation Conv, Double
DWconv, Double DW-D-Conv, and Cutconnect Block (Figure 4).

Conv1 1

Cell output

Search block

Conv3 3

Concat

Operating

block

single

Conv

single

Dilation

Conv

DWconv
DW-D-

Conv
Cutconnect

inclusion

patch

scratches

Image Groungtruth FCN8s RefineNet PSPNet Deeplab PGA-Net UNet BiSeNet Ours

Operating

block

single Conv double Conv

single

Dilation

Conv

double

Dilation

Conv

DWconv DW-D-Conv Cutconnect

Conv3 3

Conv3 3

Conv3 3
Conv3 3

Dilation=2

Conv3 3

Dilation=2

Conv3 3

Dilation=2

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Dilation=2

Dilation=2

(a) (b) (c) (d) (e) (f) (g)

1 2 3 4 5

Inputs

Outputs Downsample

Upsample

Concat

Conv 1x1

Search
block

Fig. 4 Structure of search block. The final output is determined by all operation blocks
(see in Search Strategy).

Our task is to search for convolution operation blocks that are suitable to
replace the double convolution operation blocks on the original encoder and
decoder of UNet [34]. We focus on operations with low computational cost and
did not search for replacements for upsampling, maximum pooling, jump join,
and the point convolution operation before final output. Finally, the search
network structure has been designed and shown in Figure 5.

Conv1 1

Cell output

Search block

Conv3 3

Concat

Operating

block

single

Conv

single

Dilation

Conv

DWconv
DW-D-

Conv
Cutconnect

inclusion

patch

scratches

Image Groungtruth FCN8s RefineNet PSPNet Deeplab PGA-Net UNet BiSeNet Ours

Operating

block

single Conv double Conv

single

Dilation

Conv

double

Dilation

Conv

DWconv DW-D-Conv Cutconnect

Conv3 3

Conv3 3

Conv3 3
Conv3 3

Dilation=2

Conv3 3

Dilation=2

Conv3 3

Dilation=2

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Dilation=2

Dilation=2

(a) (b) (c) (d) (e) (f) (g)

1 2 3 4 5

Inputs

Outputs Downsample

Upsample

Concat

Conv 1x1

Search
block

Fig. 5 Structure of the whole search network.

3.3 Search Strategy

In order to search for the most appropriate network structure, structural
parameters are introduced to represent the importance of different operation

HUST

Springer Nature 2021 LATEX template

10 Article Title

blocks at every position (as shown in Figure 4). At each position of the encoder
and decoder, every operation block is multiplied by a coefficient α, the value
of which represents the importance of the corresponding operation block. The
coefficient α form a matrix A of size 9 by 5 which is the structural parameter
matrix. Therefore, the output of each operation block at the same position is
multiplied by its corresponding α and summed up to obtain the output of the
search block.

During training, we utilize different learning rates for the structural param-
eters and network parameters, and separate the training processes of the two
through gradient descent. A detailed description of this approach can be found
in Algorithm 1.

3.3 Search Strategy

In order to search for the most appropriate network structure, structural parameters are

introduced to represent the importance of different operation blocks at every position

(as shown in Figure 2). At each position of the encoder and decoder, every operation

block is multiplied by a coefficient α, the value of which represents the importance of

the corresponding operation block. The coefficient α form a matrix A of size 9 by 5

which is the structural parameter matrix. Therefore, the output of each operation block

at the same position is multiplied by its corresponding α and summed up to obtain the

output of the search block.

During training, we utilize different learning rates for the structural parameters and

network parameters, and separate the training processes of the two through gradient

descent. A detailed description of this approach can be found in Algorithm 1.

Algorithm 1: Hierarchical Gradient Descent Architecture Search

Create architectural parameters (,){ }i jA = and search network weights W

for i in range(epoch):

1. Update search network weights W by SGD

2. if (i+1) % 10 == 0:

 Update architectural parameters A by SGD

 end if

end

Derive the final architecture based on optimized architectural parameters A

3.3 Performance Estimation Strategy

In addition to network performance, the other goal is to control the number of

parameters and computational complexity of the searched network. To achieve this, we

modify the loss function according to the parameter number and computational

complexity of every operation block in the search space (as shown in Table 1) . As the

parameter number and computational complexity are positively correlated, we only

considered the parameter number when optimizing the loss function. The modified

calculation formula of the loss function is as follows:

3.4 Performance Estimation Strategy

In addition to network performance, the other goal is to control the number of
parameters and computational complexity of the searched network. To achieve
this, we modify the loss function according to the parameter number and com-
putational complexity of every operation block in the search space (as shown
in Table 1) . As the parameter number and computational complexity are pos-
itively correlated, we only considered the parameter number when optimizing
the loss function. The modified calculation formula of the loss function is as
follows:

L= (1−β)Lweight + βLarch (1)

where β is the lightweight coefficient. As can be seen from formula (1), by
adjusting the size of the lightweight coefficient β, we can control the search
network to search for different degrees of lightweight network. The greater the
β is, the greater the influence of the number of network parameters will be
when searching, and we finally selected β=0.3. The specific formula of Lweight

is as follows:

Lweight(pd, gd)=Ldice(pd, gd) + 0.5× Lbce(pd, gd) (2)

HUST

Springer Nature 2021 LATEX template

Article Title 11

where pd ∈ H×W denotes the predicted pixel and the gd ∈ H×W denotes the
corresponding pixel of ground-truth. Besides, Lbce denotes the binary cross-
entropy loss while Ldice denotes the dice loss, which is given as follows:

Ldice(pd, gd) = 1−
2
∑H×W

i pidg
i
d + ε∑H×W

i (pid)
2
+
∑H×W

i (gid)
2
+ ε

(3)

The specific formula of Larch is as follows:

Larch=

9∑
i=1

Pi

5∑
j=1

Pij

(4)

where, the Pi represents the parameter number of the operation block
corresponding to the maximum structural parameter αimax at the ith search
block, and Pij represents the parameter number of the jth operation block at
the ith operation block.

By training the search network on the industrial image segmentation
dataset, we obtain the final structural parameter matrix. According to the
value of the corresponding structural parameters of different operation blocks
at every position, the operation block with the largest structural parameters
at every position is selected as the final searched operation block at this posi-
tion. Finally, the network structure suitable for the corresponding industrial
image segmentation data set is constructed.

4 Experiment and Results

In this part, we first introduce the industrial image segmentation data set, the
implementation details, and evaluation indicators. After that, we demonstrate
the performance of our method and other semantic segmentation networks on
different data sets, and carry out in-depth analysis.

4.1 Datasets

In this article, three surface defect datasets are selected to prove and evaluate
the applicability and generality of our method, including NEU-DET defect
dataset, DAGM defect dataset and Wafer Defect dataset.

NEU-Seg Dataset: the NEU data set is a standard data set collected by [35]
to solve the problem of automatic recognition for hot-rolled steel strips. There
are six types of strip steel plates in the data set, including patch, crazing,
pitted-surface, inclusion, scratches and rolled-in scale, and every surface defect
contains 300 images. The original resolution of images in the data set is 200x200
and all have corresponding defect type labels. We chose three surface defects
(inclusion, patches and scratches) for pixel level marking. Then we changed
their resolution to 96x96 and then divided them into training sets and test
sets, which contain 250 and 50 images respectively to allow them to be applied
to our industrial defect image segmentation.

HUST

Springer Nature 2021 LATEX template

12 Article Title

DAGM Dataset: The DAGM dataset [36] is manually generated and con-
tains multiple types of industrial surface defect images with an original
resolution of 512x512. We chose four of these categories, first converting their
resolutions to 256x256, then dividing them into training sets and test sets. For
the data sets of tile, cement and fabric, the training set and test set contain
125 and 25 images respectively, while the training set and test set of wallpaper
category contain 250 and 50 images respectively.

Wafer Defect Dataset: Light4new data set is a surface defect image of
industrial wafer. The defect area in the image is small. The image resolution
of the data set is 256x256, and contains 645 images in total. We divided it into
a training set and a test set, which contains 545 and 100 images respectively.

4.2 Implementation Details and Evaluation Indicators

Search. Firstly, we search for a lightweight segmentation network suitable for
each data set. The search process used a batch size of 4 and employed the
stochastic gradient descent (SGD) algorithm with a learning rate of 0.0003 for
network parameters. The learning rate for structural parameters is set at 0.1,
and the structural parameters are updated every ten iterations. We conducted
400,400, and 600 iterations on the NEU-Seg, DAGM 2007, and Light4new
datasets, respectively. Since the convolution operations in our searching net-
work consisted of lightweight convolution operation blocks, the search process
does not take too much time. At the end of the search, we obtained lightweight
image segmentation networks suitable for each dataset and then proceeded to
network training and testing.

Training. To ensure fairness, all of our models are trained from scratch
using the stochastic gradient descent (SGD) algorithm with a learning rate
0.0003 and momentum of 0.9. A batch size of 16 and weight decay of 0.0001 are
adopted for all datasets. The models are trained for 600, 600, 800 iterations for
the NEU-Seg, DAGM 2007 and Wafer Defect dataset, respectively. However,
due to the small amount of data, lightweight models such as BiSeNet struggled
to converge, so we conducted 2000 iteration training for each dataset. Unfor-
tunately, the lightweight models ESNet and ERFNet failed to converge during
training on the above datasets, so we only used BiSeNet for comparison. To
expand the training set and prevent overfitting, we randomly rotated images
by 90° and reversed them during training for data augmentation. Evalua-
tion. When evaluating network performance, we adopted a simple and efficient
method by directly loading the test data to test the performance of each net-
work after training. However, when evaluating lightweight networks, we also
considered factors such as parameter number and inference time in addition to
network performance. Therefore, we tested the parameter number and infer-
ence time of different networks on each dataset. Evaluation indicators. In order
to comprehensively evaluate the performance of various networks on different
datasets, we use three evaluation indexes, namely IoU, network parameters and
inference FPS (Frames Per Second). The IoU is calculated using the formula

HUST

Springer Nature 2021 LATEX template

Article Title 13

given as follows:

IoU =
TP

FP + TP + FN
(5)

where, TP denotes true positive. FP denotes false positive. FN denotes false
negative . The ptflops[] module in python is utilized to calculate the number
of parameters for different networks. In addition, we measure the inference
time using a single GPU and repeat the process 2500 times to minimize error
fluctuation. After that, the result are then converted into inference FPS. While
loading data may have introduced some errors in the inference time test, these
errors are consistent across all networks and are therefore unlikely to have a
significant impact on our evaluation of network speed.

Setup. Our experiments are conducted using PyTorch 1.4.0 and we obtain
the inference time by running on a single Tesla P100 with CUDA10.2, which
is used for comparison with other methods.

4.3 Results

We ended up choosing six classic segmentation networks (FCN [28], RefineNet
[37], PSPNet [38], Deeplab [39], UNet [34]), a network designed for industrial
image segmentation (PGA-Net [31]), and a lightweight and real time network
(BiSeNet [21]) that performs well in natural images as the baseline network to
compare with our network.

4.3.1 NEU-Seg Dataset

We perform a search on all three NEU-Seg datasets [35] and obtain the
lightweight segmentation network structure that is suitable for each dataset
(the network structure shows in the appendix). Based on the above experi-
ments, we have obtained the results as shown in the Table 2.

Table 2 Performance of big networks and our method on the NEU-Seg Dataset.

We ended up choosing six classic segmentation networks (FCN, RefineNet, PSPNet,

Deeplab, UNet), a network designed for industrial image segmentation (PGA-Net), and

a lightweight network (BiSeNet) that performs well in natural images as the baseline

network to compare with our network.

4.3.1 NEU-Seg Dataset

We perform a search on all three NEU-Seg datasets and obtain the lightweight

segmentation network structure that is suitable for each dataset (the network structure

shows in the appendix). Based on the above experiments, we have obtained the results

as shown in the Table 2.

 NEU-inclusion NEU-patches NEU-scratches

CNN IoU params fps IoU params fps IoU params fps

FCN 53.06 19.18M 181.43 80.74 19.18M 181.55 60.32 19.18M 180.38

RefineNet 57.23 80.22M 74.25 80.85 80.22M 76.76 66.36 80.22M 73.19

PSPNet 45.73 53.32M 89.34 76.54 53.32M 89.93 58.18 53.32M 89.67

Deeplab 55.68 59.34M 86.84 80.55 59.34M 90.78 56.03 59.34M 86.51

PGA-Net 60.45 51.41M 139.82 80.70 51.41M 164.91 61.96 51.41M 165.02

UNet 66.60 31.39M 110.47 81.51 31.39M 109.31 75.00 31.39M 105.44

Ours 68.25 16.75M 186.60 82.20 18.67M 184.69 76.26 15.78M 195.77

Table2. Performance of big networks and our method on the NEU-Seg Dataset

As seen in Table 2, our method outperform all other methods in three datasets.

Compared to the classic segmentation networks and the PGA-Net designed for

industrial image segmentation, our method achieves higher performance while

significantly reducing the number of parameters and inference time. In terms of speed,

our method also ranked at the top of the table.

Figure 4 shows the visual display of the results of each network on the NEU-Seg

Dataset. As shown in figure 4, our model achieves higher precision in the overall defect

profile segmentation and is more sensitive to defect details. This is mainly due to our

well-designed search space, which includes convolution operations with different field

sizes, and the search network identifies the most suitable convolution operation for each

location of the network. This enables the final network to better extract both long-

distance and short-distance features.

As shown in Table 2, our method outperform all other methods in three
datasets. Compared to the classic segmentation networks and the PGA-Net

HUST

Springer Nature 2021 LATEX template

14 Article Title

[31] designed for industrial image segmentation, our method achieves higher
performance while significantly reducing the number of parameters and infer-
ence time. In terms of speed, our method also ranked at the top of the
table.

To further demonstrate the effectiveness of our method, we replaced the
double convolutional operation blocks in UNet [34] with feature extraction
modules in our search space. This resulted in the construction of three networks
- Single-U, Cut-U and KD-U (DW-U and DW-D-U are not shown due to poor
performance). In addition, we also compare our method with BiSeNet [21] and
all the results in Table 3. Compared to the lightweight network BiSeNet [21],
our methods did not increase the number of parameters or decrease the speed
by much, but our network performance was much better (up to 83 % higher)
and the generalization is significantly better.

Table 3 Performance of small networks and our method on the NEU-Seg Dataset.

inclusion

patch

scratches

Image Groungtruth FCN8s RefineNet PSPNet Deeplab PGA-Net UNet BiSeNet Ours

Figure 4. The visual display of the results of each network on the NEU-Seg Dataset

 NEU-inclusion NEU-patches NEU-scratches

CNN IoU params fps IoU params fps IoU params fps

Single-U 65.98 15.68M 198.85 80.38 15.68M 198.16 75.77 15.68M 194.42

Cut-U 66.53 19.17M 163.72 82.68 19.17M 174.09 75.89 19.17M 174.95

KD-U 64.07 15.68M 167.67 80.63 15.68M 165.34 75.08 15.68M 164.37

BiSeNet 45.67 12.40M 199.84 75.04 12.40M 197.94 41.62 12.40M 197.16

Ours 68.25 16.75M 186.60 82.20 18.67M 184.69 76.26 15.78M 195.77

Table3. Performance of small networks and our method on the NEU-Seg Dataset

(Single-U, Cut-U and KD-U respectively represents the network constructed by

replacing the convolutional operation block in UNet with Single conv block,

Cutconnect block and Dilation conv block)

To further demonstrate the effectiveness of our method, we replaced the double

convolutional operation blocks in UNet with feature extraction modules in our search

space. This resulted in the construction of three networks - Single-U, Cut-U and KD-U

(DW-U and DW-D-U are not shown due to poor performance). In addition, we also

compare our method with BiSeNet and all the results in Table 3. Compared to the

lightweight network BiSeNet, our methods did not increase the number of parameters

or decrease the speed by much, but our network performance was much better (up to

83% higher) and the generalization is significantly better.

As shown in Table 3, the model obtained through our search method performs well on

the dataset. It ensured a light model structure and fast reasoning speed while achieving

As shown in Table 3, the model obtained through our search method per-
forms well on the dataset. It ensured a light model structure and fast reasoning
speed while achieving superior performance.

Conv1 1

Cell output

Search block

Conv3 3

Concat

Operating

block

single

Conv

single

Dilation

Conv

DWconv
DW-D-

Conv
Cutconnect

inclusion

patch

scratches

Image Groungtruth FCN8s RefineNet PSPNet Deeplab PGA-Net UNet BiSeNet Ours

Operating

block

single Conv double Conv

single

Dilation

Conv

double

Dilation

Conv

DWconv DW-D-Conv Cutconnect

Conv3 3

Conv3 3

Conv3 3
Conv3 3

Dilation=2

Conv3 3

Dilation=2

Conv3 3

Dilation=2

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Conv3 3

groups=c

Conv1 1

Dilation=2

Dilation=2

(a) (b) (c) (d) (e) (f) (g)

1 2 3 4 5

Inputs

Outputs Downsample

Upsample

Concat

Conv 1x1

Search
block

Fig. 6 The visual display of the results of each network on the NEU-Seg Dataset.

Figure 4 shows the visual display of the results of each network on the NEU-
Seg Dataset. As shown in figure 4, our model achieves higher precision in the
overall defect profile segmentation and is more sensitive to defect details. This

HUST

Springer Nature 2021 LATEX template

Article Title 15

is mainly due to our well-designed search space, which includes convolution
operations with different field sizes, and the search network identifies the most
suitable convolution operation for each location of the network. This enables
the final network to better extract both long-distance and short-distance
features.

4.3.2 DAGM Dataset

Table 4 Performance of each network on DAGM Dataset.

superior performance.

4.3.2 DAGM Dataset

Similar to the previous experiment, we conducted a search on the four datasets of

DAGM to obtain the lightweight segmentation network structure suitable for each

datasets. The network structure for each dataset are provided in the appendix. We

trained various networks on different datasets and obtained the results presented in

Table 4.

 DAGM-tile DAGM-cement DAGM-fabric DAGM-wallpaper

CNN IoU params fps IoU params fps IoU params fps IoU params fps

FCN 47.06 19.18M 51.77 70.26 19.18M 51.81 77.91 19.18M 49.77 77.08 19.18M 73.66

RefineNet 63.58 80.22M 19.64 63.09 80.22M 19.94 25.58 80.22M 19.91 50.78 80.22M 21.31

PSPNet 64.25 53.32M 31.39 72.54 53.32M 30.09 79.01 53.32M 31.13 76.74 53.32M 35.16

Deeplab 59.62 59.34M 47.93 69.06 59.34M 48.37 76.98 59.34M 48.32 56.49 59.34M 57.80

UNet 67.33 31.39M 33.55 74.47 31.39M 36.03 78.87 31.39M 34.58 79.09 31.39M 49.59

BiSeNet 58.68 12.4M 62.41 70.95 12.4M 69.27 53.47 12.4M 63.21 41.25 12.4M 91.26

Ours 67.35 17.63M 49.22 74.31 11.53M 49.43 78.55 15.17M 49.31 78.89 11.41M 64.38

Table 4. Performance of each network on DAGM Dataset

Based on the data presented in Table 4, our model has achieved comparable

performance to the strongest network, UNet. However, our model has significantly

reduced the number of parameters (up to 63.7% lower) and improved running speed

(up to 47% faster) compared to UNet. Our model also outperforms other classical

segmentation models in terms of both performance and parameter quantity, with little

reduction in speed.

While BiSeNet has a great advantage in running speed, its generalization performance,

convergence speed, performance, and parameter numbers on the datasets are

significantly different from our model. Overall, our model achieves the best precision-

speed balance among all the models in the table.

4.3.3 Light4new Dataset

Similar to the previous experiment, we conducted a search on the Light4new dataset to

obtain lightweight segmentation network structures suitable for this dataset. The

network structures are provided in the appendix. We trained various networks on the

Similar to the previous experiment, we conducted a search on the four
datasets of DAGM [36] to obtain the lightweight segmentation network struc-
ture suitable for each datasets. The network structure for each dataset are
provided in the appendix. We trained various networks on different datasets
and obtained the results presented in Table 4. Based on the data presented
in Table 4, our model has achieved comparable performance to the strongest
network, UNet [34]. However, our model has significantly reduced the number
of parameters (up to 63.7% lower) and improved running speed (up to 47%
faster) compared to UNet [34]. Our model also outperforms other classical seg-
mentation models in terms of both performance and parameter quantity, with
little reduction in speed.

While BiSeNet [21] has a great advantage in running speed, its general-
ization performance, convergence speed, performance, and parameter numbers
on the datasets are significantly different from our model. Overall, our model
achieves the best precision-speed balance among all the models in the table.

4.3.3 Wafer Defect Dataset

Similar to the previous experiment, we conducted a search on the Wafer Defect
dataset to obtain lightweight segmentation network structures suitable for this
dataset. The network structures are provided in the appendix. We trained var-
ious networks on the Wafer Defect dataset and obtained the results presented
in Table 5. Compared to classical split networks, our model achieves excellent

HUST

Springer Nature 2021 LATEX template

16 Article Title

Table 5 Performance of each network on Wafer Defect Dataset.Light4new dataset and obtained the results presented in Table 5.

 Wafer Defect Dataset

CNN IoU params fps

FCN 44.56 19.18M 97.05

RefineNet 47.68 80.22M 22.71

PSPNet 48.61 53.32M 38.91

Deeplab 38.89 59.34 71.96

UNet 46.42 31.39M 53.69

BiSeNet 21.29 12.4M 102.71

Ours 46.63 11.23M 77.18

Table 5. Performance of each network on Wafer Defect Dataset

Compared to classical split networks, our model achieves excellent performance with

significantly fewer parameters. It has less than 2% lower Intersection over Union (IoU)

compared to the best-performing PSPNet, while reducing the number of parameters by

more than 40% compared to all classical models (up to 86% lower, compared to

RefineNet).

Compared to BiSeNet, our model shows a 37% reduction in speed, but a 9.4% reduction

in parameter count, and a 119% improvement in performance. Overall, our method

achieves the best precision-speed balance on the Light4new dataset.

5. Conclusion

We believe that industrial image segmentation requires both low-level details and high-

level semantics. To achieve this, we constructed a search space containing lightweight

convolutional operation blocks with different sizes of sensitivity fields. Using network

architecture search, we obtained a lightweight network suitable for industrial image

segmentation, which we call the lightweight operation search UNet (LOS-UNet).

Our LOS-UNet achieves an excellent precision-speed balance on industrial image

segmentation datasets. It has significantly fewer parameters than classical segmentation

networks and, in some datasets, even fewer parameters than the lightweight network

BiSeNet. Despite having fewer parameters, LOS-UNet maintains competitive network

performance. We hope that our method will facilitate further research in the field of

industrial image segmentation.

performance with significantly fewer parameters. It has less than 2% lower
Intersection over Union (IoU) compared to the best-performing PSPNet [38],
while reducing the number of parameters by more than 40% compared to all
classical models (up to 86% lower, compared to RefineNet [37]).

Compared to BiSeNet [21], our model shows a 37% reduction in speed, but
a 9.4% reduction in parameter count, and a 119% improvement in performance.
Overall, our method achieves the best precision-speed balance on the Wafer
Defect dataset.

5 Conclusion

We believe that industrial image segmentation requires both low-level details
and high-level semantics. To achieve this, we constructed a search space
containing lightweight convolutional operation blocks with different sizes of
sensitivity fields. Using network architecture search, we obtained a lightweight
network suitable for industrial image segmentation, which we call the
lightweight operation search UNet (LOS-UNet).

Our LOS-UNet achieves an excellent precision-speed balance on industrial
image segmentation datasets. It has significantly fewer parameters than classi-
cal segmentation networks and, in some datasets, even fewer parameters than
the lightweight network BiSeNet [21]. Despite having fewer parameters, LOS-
UNet maintains competitive network performance. We hope that our method
will facilitate further research in the field of industrial image segmentation.

References

[1] Zheng, J., Wang, L., Liu, J., Wang, H., Wang, S., Wang, L., Zhang, J.:
An inspection method of rail head surface defect via bimodal structured
light sensors. International Journal of Machine Learning and Cybernetics,
1–18 (2022)

HUST

Springer Nature 2021 LATEX template

Article Title 17

[2] Banharnsakun, A.: Hybrid abc-ann for pavement surface distress detec-
tion and classification. International Journal of Machine Learning and
Cybernetics 8, 699–710 (2017)

[3] Tao, Y., Jun, Z., Zhi-hao, Z., Yi, Z., Fu-qiang, Z., Xiao-zhi, G.: Fault
detection of train mechanical parts using multi-mode aggregation feature
enhanced convolution neural network. International Journal of Machine
Learning and Cybernetics 13(6), 1781–1794 (2022)

[4] Dou, Y., Huang, Y., Li, Q., Luo, S.: A fast template matching-based
algorithm for railway bolts detection. International Journal of Machine
Learning and Cybernetics 5, 835–844 (2014)

[5] Zhu, X., Liu, J., Zhou, X., Qian, S., Yu, J.: Enhanced feature fusion struc-
ture of yolo v5 for detecting small defects on metal surfaces. International
Journal of Machine Learning and Cybernetics, 1–11 (2023)

[6] Zhou, Y., Chen, S., Wang, Y., Huan, W.: Review of research on lightweight
convolutional neural networks. In: 2020 IEEE 5th Information Technol-
ogy and Mechatronics Engineering Conference (ITOEC), pp. 1713–1720
(2020). IEEE

[7] Tulbure, A.-A., Tulbure, A.-A., Dulf, E.-H.: A review on modern defect
detection models using dcnns–deep convolutional neural networks. Jour-
nal of Advanced Research 35, 33–48 (2022)

[8] Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters
for efficient convnets. arXiv preprint arXiv:1608.08710 (2016)

[9] Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning con-
volutional neural networks for resource efficient inference. arXiv preprint
arXiv:1611.06440 (2016)

[10] He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep
neural networks. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1389–1397 (2017)

[11] Nagel, M., Fournarakis, M., Amjad, R.A., Bondarenko, Y., Van Baalen,
M., Blankevoort, T.: A white paper on neural network quantization. arXiv
preprint arXiv:2106.08295 (2021)

[12] Bashivan, P., Tensen, M., DiCarlo, J.J.: Teacher guided architecture
search. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5320–5329 (2019)

[13] Aguilar, G., Ling, Y., Zhang, Y., Yao, B., Fan, X., Guo, C.: Knowledge
distillation from internal representations. In: Proceedings of the AAAI

HUST

Springer Nature 2021 LATEX template

18 Article Title

Conference on Artificial Intelligence, vol. 34, pp. 7350–7357 (2020)

[14] Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861
(2017)

[15] Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.-C.:
Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
4510–4520 (2018)

[16] Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang,
W., Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3.
In: Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1314–1324 (2019)

[17] Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: An extremely efficient
convolutional neural network for mobile devices. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–
6856 (2018)

[18] Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7132–7141 (2018)

[19] Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: Icnet for real-time semantic
segmentation on high-resolution images. In: Proceedings of the European
Conference on Computer Vision (ECCV), pp. 405–420 (2018)

[20] Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: A deep neural
network architecture for real-time semantic segmentation. arXiv preprint
arXiv:1606.02147 (2016)

[21] Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Bisenet: Bilateral
segmentation network for real-time semantic segmentation. In: Proceed-
ings of the European Conference on Computer Vision (ECCV), pp.
325–341 (2018)

[22] Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: A survey.
The Journal of Machine Learning Research 20(1), 1997–2017 (2019)

[23] Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learn-
ing. arXiv preprint arXiv:1611.01578 (2016)

[24] Liu, H., Simonyan, K., Yang, Y.: Darts: Differentiable architecture search.
arXiv preprint arXiv:1806.09055 (2018)

HUST

Springer Nature 2021 LATEX template

Article Title 19

[25] Cai, H., Zhu, L., Han, S.: Proxylessnas: Direct neural architecture search
on target task and hardware. arXiv preprint arXiv:1812.00332 (2018)

[26] Chen, L.-C., Collins, M., Zhu, Y., Papandreou, G., Zoph, B., Schroff,
F., Adam, H., Shlens, J.: Searching for efficient multi-scale architectures
for dense image prediction. Advances in neural information processing
systems 31 (2018)

[27] Nekrasov, V., Chen, H., Shen, C., Reid, I.: Fast neural architecture search
of compact semantic segmentation models via auxiliary cells. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9126–9135 (2019)

[28] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

[29] Dung, C.V., et al.: Autonomous concrete crack detection using deep fully
convolutional neural network. Automation in Construction 99, 52–58
(2019)

[30] Li, S., Zhao, X., Zhou, G.: Automatic pixel-level multiple damage detec-
tion of concrete structure using fully convolutional network. Computer-
Aided Civil and Infrastructure Engineering 34(7), 616–634 (2019)

[31] Dong, H., Song, K., He, Y., Xu, J., Yan, Y., Meng, Q.: Pga-net: Pyramid
feature fusion and global context attention network for automated sur-
face defect detection. IEEE Transactions on Industrial Informatics 16(12),
7448–7458 (2019)

[32] Guo, M.-H., Lu, C.-Z., Liu, Z.-N., Cheng, M.-M., Hu, S.-M.: Visual
attention network. arXiv preprint arXiv:2202.09741 (2022)

[33] Sovrasov, V.: Ptflops: a Flops Counting Tool for Neural Networks in
Pytorch Framework. https://github.com/sovrasov/flops-counter.pytorch

[34] Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks
for biomedical image segmentation. In: Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Con-
ference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18,
pp. 234–241 (2015). Springer

[35] Song, K., Yan, Y.: A noise robust method based on completed local binary
patterns for hot-rolled steel strip surface defects. Applied Surface Science
285, 858–864 (2013)

[36] Wieler, M., Hahn, T.: Weakly supervised learning for industrial optical

HUST

https://github.com/sovrasov/flops-counter.pytorch

Springer Nature 2021 LATEX template

20 Article Title

inspection. In: DAGM Symposium In (2007)

[37] Lin, G., Milan, A., Shen, C., Reid, I.: Refinenet: Multi-path refinement
networks for high-resolution semantic segmentation. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp.
1925–1934 (2017)

[38] Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network.
2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 6230–6239 (2016)

[39] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.:
Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence 40(4), 834–848 (2017)

HUST

Springer Nature 2021 LATEX template

Article Title 21

Appendix A

The following table A1 shows the LOS-UNet network architecture obtained by
searching the network.

Table A1 Details of the searched LOS-UNet network architecture.Appendix:

 Operation block

Dataset Encoder-1 Encoder-2 Encoder-3 Encoder-4 Encoder-5 Decoder-1 Decoder-2 Decoder-3 Decoder-4

inclusion Double

DW-D-

Conv

Single

Conv

Single

Conv

Single

Conv

Single

Dilation

Conv

Cutconnect

Block

Single

Conv

Single

Conv

Cutconnect

Block

patches Single

Conv

Single

Conv

Cutconnect

Block

Single

Conv

Cutconnect

Block

Cutconnect

Block

Cutconnect

Block

Single

Conv

Single

Conv

 scratches Cutconnect

Block

Single

Conv

Cutconnect

Block

Single

Conv

Single

Conv

Single

Conv

Single

Conv

Single

Conv

Single

Conv

tile Double

DWconv

Single

Conv

Cutconnect

Block

Single

Conv

Cutconnect

Block

Single

Dilation

Conv

Cutconnect

Block

Single

Conv

Cutconnect

Block

cement Cutconnect

Block

Single

Conv

Single

Conv

Single

Dilation

Conv

Double

DWconv

Single

Dilation

Conv

Single

Conv

Single

Dilation

Conv

Cutconnect

Block

fabric Cutconnect

Block

Single

Conv

Single

Conv

Double

DW-D-

Conv

Single

Dilation

Conv

Single

Dilation

Conv

Cutconnect

Block

Single

Conv

Single

Dilation

Conv

wallpaper Double

DWconv

Cutconnect

Block

Single

Conv

Cutconnect

Block

Cutconnect

Block

Double

DWconv

Single

Dilation

Conv

Single

Conv

Single

Conv

Wafer

Defect

Double

DWconv

Single

Conv

Cutconnect

Block

Single

Conv

Double

DWconv

Cutconnect

Block

Double

DW-D-

Conv

Cutconnect

Block

Single

Conv

The network structure of different datasets

HUST

	Introduction
	Related Work
	Lightweight Neural Network Design
	 Neural Architecture Search
	Defect Segmentation

	Methods
	Overview
	Search Space
	Operation Block Selection Principle
	Introduction of Candidate Convolution Blocks and Test Experiment
	Finalize Search Space

	Search Strategy
	Performance Estimation Strategy

	Experiment and Results
	Datasets
	Implementation Details and Evaluation Indicators
	Results
	NEU-Seg Dataset
	DAGM Dataset
	Wafer Defect Dataset

	Conclusion
	

