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A-Net: An A-shape Lightweight Neural Network
for Real-time Surface Defect Segmentation

Biao Chena, Tongzhi Niua, Wenyong Yu∗, Ruoqi Zhang, Zhenrong Wang, Bin Li

Abstract—Surface defect segmentation is a critical task in
industrial quality control. Exiting neural network architectures
often face challenges in providing both real-time performance
and high accuracy, limiting their practical applicability in time-
sensitive, resource-constrained industrial setting. To bridge this
gap, we introduce A-Net, an A-shape lightweight neural network
specifically designed for real-time surface defect segmentation.
Initially, A-Net introduce a pioneering A-shaped architecture
tailored to efficiently handle both low-level details and high-
level semantic information. Secondly, a series of lightweight
feature extraction blocks are designed, explicitly engineered to
meet the stringent demands of industrial defect segmentation.
Finally, rigorous evaluations across multiple industry-standard
benchmarks demonstrate A-Net’s exceptional efficiency and high
performance. Compared to the well-estabilished U-Net, A-Net
achieves comparable or superior IoU (Intersection over Union)
scores with gains of -0.21%, -0.3%, +4.7%, and +5.94% on
NEU-seg, DAGM-seg, MCSD-seg, and MT dataset, respectively.
Remarkably, A-Net does so with only 0.39M parameters, a 98.8%
reduction, and 0.44G FLOPs (Floating Point Operations), a 99%
decrease in computational load. Besides, A-Net shows extremely
fast inference speed on edge device without GPU because of its
low FLOPs. A-Net contributes to the development of effective and
efficient defect segmentation networks, suitable for real-world
industrial applications with limited resources.

Index Terms—Surface defect detection, Lightweight neural
network, Real-time neural network, Neural network architecture.

I. INTRODUCTION

IN recent years, the field of defect segmentation has gained
significant prominence as a crucial aspect of industrial

surface defect detection. The objective is to precisely locate
and size defects for effective quality control [1], [2]. Advances
in semantic segmentation architectures, such as Fully Con-
volutional Networks (FCN) [3], SegNet [4], U-Net [5], and
PGA-Net [6], have improved performance metrics. Concur-
rently, there is a growing requirement for efficient algorithms
capable of low-latency edge deployment in computationally
constrained environments. This has led to a rising interest
in the development of defect segmentation networks that
optimize the trade-off between computational efficiency and
effectiveness.
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Fig. 1. Comparisons between classical and lightweight semantic segmentation
networks and the A-Net on NEU-inclusion dataset.

Recently, numerous researchers have proposed the design of
low-latency, high-efficiency CNN models that maintain satis-
factory segmentation accuracy. We will discuss segmentation
network design from two perspectives: the architectures and
the lightweight approaches.

Regarding the architectures, there are three prevalent ap-
proaches, as illustrated in Fig. 2(a-c). 1) Encoder-decoder
architectures excel at pixel-wise prediction through compre-
hensive feature extraction, but may lack nuanced context
understanding (e.g., FCN [3], SegNet [4], U-Net [5], and PGA-
Net [6]). 2) Pyramid pooling architectures mitigate this by
integrating multi-scale features, albeit at the cost of increased
computational complexity (e.g., PSPNet [7], DeepLab [8]).
3) Bilateral architectures provide a balanced approach by
adopting a multi-path framework to combine low-level details
with high-level semantics (e.g., BiSegNet [9], BiSegNet V2
[10], STDC-MA network (STDC) [11]).

In the pursuit of lightweight approaches, several key tech-
niques warrant thorough investigation. 1) input restriction
and channel pruning serve as direct methods for reducing
computational load, albeit with trade-offs in representation
capacity (e.g., ENet [12], ICNet [13]). 2) weight quantization
and knowledge distillation emerge as sophisticated techniques
to compact the model further, targeting both the storage and
computational facets(e.g., [14], [15] ). 3) the well-designed
convolution blocks, such as depthwise separable convolutions,
provide architectural innovations that strike a balance between
efficiency and performance (e.g., ERFNet [16], ENet [12]).

Moreover, we analyze the challenges of designing a
lightweight model for surface defect segmentation. 1) limited
defect image availability hinders lightweight models, which
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TABLE I
NOMENCLATURE

Symbol Quantity Symbol Quantity
ParamsConv The parameter number of general convolution opr Different operations in every stage
FLOPsConv The FLOPs of general convolution Sn The n-th stage in A-Net

ParamsdwConv The parameter number of DW-Conv Cin The number of input channels for different stage
FLOPsdwConv The FLOPs of DW-Conv Cm The number of intermediate channels in different stage

Ci The number of input channels for convolution Cout The number of output channels in different stage
Co The number of output channels for convolution LFEM Different lightweight feature extraction modules
Kh The convolution kernel height Lweight The loss function in training stage
Kw The convolution kernel width Ldice The dice loss function
Fh The feature map height Lbce The binary cross-entropy loss function
Fw The feature map width pd The predicted pixel of models
TP Positive predictions that match with the ground truth gd The pixel of ground truth
FP Positive predictions that do not match with ground truth FN Negative predictions that do not match with ground truth

are inherently limited in their feature extraction capabilities.
2) defects’ varied sizes and irregular shapes have been tackled
by prior methods using large-scale or dilated convolutions and
pyramid structures, but these add computational complexity.
3) the subtle differences between defective and normal areas
complicate segmentation. While multiple skip connections
and auxiliary training branches can improve accuracy, they
increase memory overhead.

To overcome the aforementioned challenges, we extends
Bilateral architectures and Well-designed convolution blocks
to propose a lightweight network called A-Net, which demon-
strates strong performance on various surface defect datasets
while maintaining exceptional lightness. Fig. 1 shows the com-
parisons between classical and lightweight semantic segmen-
tation networks and the A-Net in terms of IoU (Intersection
over Union) performance, model FLOPs and parameters on
NEU-inclusion dataset. Due to the large difference in the
number of parameters between the lightweight segmentation
network and the universal segmentation network, we enlarge
the circle representing A-Net and ENet by a factor of 15,
ESNet, ERFNet and Topformer by a factor of 6, and BiSeNet
and STDC by a factor of 1.5 to make the picture more
beautiful. It is obvious that the proposed A-Net is superior
than all models shown in this figure, while using much fewer
FLOPs and parameters.

Initially, we proposed an A-shaped structure, depicted in
Fig. 2(d). A-Net retains the Encoder-Decoder structure and
incorporates the concept of Bilateral architectures to extract
both low-level detailed information and high-level semantic
information. Rather than adding additional branches, it is
designed with different feature extraction layers within the
same path: shallow layers capture detailed information, while
deeper layers focus on semantic content. These features are
fused through a single skip connection, giving the architecture
an ’A’-like shape. As a result, A-Net not only preserves the
multi-scale feature extraction and fusion characteristics but
also minimizes memory usage typically incurred by multiple
skip connections.

Subsequently, we designed a series of lightweight convo-
lution blocks comprising: 1) Feature extraction blocks, which
include a light block and a wide block corresponding to 3x3
and 5x5 receptive fields, respectively. 2) Up-sampling and
down-sampling blocks, composed of 2x2 convolutional layers
with a stride of 2 and deconvolutional layers, respectively.

3) Concatenation blocks. Within these blocks, we employed
depthwise convolution, dropout layers, and residual connec-
tion structures to prevent overfitting, gradient vanishing, and
gradient explosion issues, thus creating a lightweight network
model adaptable to small datasets.

In summary, our main contributions are as follows:
1) We propose a novel network architecture, dubbed A-

Net, which extracts information at different levels in stages
during the down-sampling stage and facilitates the aggregation
of information at various levels through one skip connection
in the up-sampling stage.

2) A series lightweight convolution blocks are designed
for A-Net. These blocks enhance the receptive field, capture
rich contextual information, and effectively prevent severe
overfitting on small datasets while minimizing computational
costs.

3) A-Net achieves remarkable results on different datasets
(NEU-seg, DAGM-seg, MCSD-seg, MT dataset). More specif-
ically, it demonstrates competitive performance against classic
large models such as U-Net (with 31.39M parameters and
42.75G FLOPs), requiring only 0.39M parameters and 0.44G
FLOPs.

In order to better showcase our work, we have organized
the symbols appearing in the paper and provided the corre-
sponding meanings of every symbol in the Table I, where
the DW-Conv represents the depthwise separable convolution.
Besides, the code of the work shown in the paper is available
on GitHub: https://github.com/Max-Chenb/A-Net.

II. RELATED WORK

In recent years, notable progress has been made in the realm
of industrial surface defect segmentation. This section centers
its examination on three primary categories of methodologies
that are particularly germane to our work, specifically generic
semantic segmentation, lightweight architectures and real-time
semantic segmentation techniques, as well as industrial surface
defect segmentation.

A. Generic Semantic Segmentation

With the introduction of the FCN [3], methods based on this
framework have continuously pushed the state-of-the-art per-
formance on various benchmarks. Currently, the mainstream
FCN [3] structures are encoder-decoder structures, as depicted
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Fig. 2. Three popular semantic segmentation network architectures (a-c) and the novel architecture proposed in this paper (d).

in Fig. 2(a). The down-sampling stage captures information
of different scales in the input image, while the up-sampling
stage recovers the feature map resolution and maps it into
semantic segmentation output. To enhance the performance of
the encoder-decoder structure, most high-performing semantic
segmentation networks employ a horizontal connection struc-
ture. For example, U-Net [5] uses a concatenate operation to
connect feature maps with the same resolution in the encoder
and decoder and then aggregates information in different chan-
nels through convolution operation. SegNet [4] uses a method
to save maximum pooled coordinates to guide up-sampling.
RefineNet [17] performs up-sampling of the encoder’s feature
map using multipath refinement. DFN [18] employs a channel
attention module to merge the backbone network and recover
details.

In addition, DeepLab [8] adopts cavity convolution of
different sizes at the decoder stage to upsample the feature map
obtained from the encoder stage to the same resolution and
aggregate to fuse feature information of different scales, which
shows in Fig. 2(b). HRNet [19] utilizes multiple branches to
maintain high resolution for higher precision segmentation.

Recently, in order to pursue higher performance, some
researchers have introduced transformer [20] in the field of
natural language processing (NLP) into visual tasks. The
original representative of vision transformer is the ViT [21]
model for image classification proposed by Dosovitskiy et
al. Its basic idea is to divide the image into several patches
and simultaneously input it into the network and convert it
into a sequence for operation, so that the perception field can
be expanded into the whole image. It improves the ability
of the network to extract the overall features of the image,
and finally builds a network model suitable for visual tasks.
Swim-transformer [22] module is proposed on the basis of
ViT to further optimize the attention mechanism. After that,
Zheng et al. proposed the first VIT-based image segmentation
representative model SERT [23], which realized end-to-end
image segmentation by adding PUP and MLA upsampling
modules. Cao et al. proposed Swim-Unet [24] for image
segmentation task and replaced the convolutional layer in
unet with swim transformer block to further improve the

performance.
However, these architectures predominantly rely on oper-

ations with a high number of parameters and computational
overhead. Consequently, the majority of such networks are
characterized by a considerable size and low inference speed.

B. Light-weight and Real-time Semantic Segmentation

With the advancement of deep learning, numerous large-
scale network models have been proposed. However, due to
their high parameter count and computational overhead, it
has become challenging to meet the stringent requirements of
real-world applications that demand prompt response times.
Consequently, researchers have recently shifted their focus
towards neural network algorithms that exhibit lightweight and
real-time characteristics. Among these, ENet [12] stands out as
the pioneer work that emphasizes convolutional neural network
efficiency. This network adopts an encoder-decoder structure,
employs maximum pooling coordinates to guide upsampling,
and achieves an extremely high reasoning speed. Similarly,
ICNet [13] leverages image concatenation strategy to acceler-
ate the network’s reasoning speed. ERFNet [16] incorporates
residual connections and factorized convolutions to ensure
accuracy while improving efficiency. ESNet [25] employs the
decomposition of convolutional units and other lightweight
convolutional operations to construct a symmetrical structure
real-time semantic segmentation network. Finally, DFANet
[26] utilizes feature repetition to decrease network complexity
while preserving feature expression.

Despite the ability of above-mentioned networks to achieve
a lightweight network structure or real-time inference speed,
the aforementioned lightweight or real-time semantic segmen-
tation networks often entail a trade-off between performance
and the segmentation capability of small-scale features. This
is due to their inability to effectively attend to both low-level
details and high-level semantic information simultaneously
[10].

To address the aforementioned challenges, BiSeNetV2 [10]
introduces a Bilateral Segmentation Backbone as illustrated
in Fig. 2(c). This architecture incorporates both detailed and
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semantic branches during the sampling phase to enable the si-
multaneous extraction of corresponding information, which is
subsequently aggregated and directly upsampled to the output
resolution. Despite BiSeNetV2’s ability to perform real-time
semantic segmentation via GPU-accelerated computing while
simultaneously extracting details and semantic information,
the network’s parameter count and computational requirements
remain significant due to the existence of two subsampling
branches. Thus, its deployment on industrial edge devices
without GPU-accelerated computing is not viable.

Besides, topformer [27] multiscale tokens through pyramid
structure, and then integrate tokens of different scales. This
method reduces the number of parameters and computational
complexity in transformer, and improves the inference speed
of the network. However, due to the large amount of data
required for its training, it is not applicable to the field of
industrial defect detection.

To address these limitations, this paper proposes the A-Net
structure illustrated in Fig. 2(d). A-Net employs a specially
designed feature extraction module to realize a lightweight
network structure and real-time reasoning while aggregating
detailed information and semantic information through a single
jump connection.

C. Industrial Surface Defect Segmentation
The segmentation of industrial surface defects based on

neural networks has garnered increasing attention with the
development of deep learning. In recent years, full convo-
lutional neural network-based methods for industrial surface
defect segmentation have emerged continuously. For example,
Wang et al. [28] proposed an FCN-based method for refining
and segmenting defects in tire images by fusing multi-scale
sampling layer feature maps, while Yu et al. [29] developed
a multi-stage FCN method to achieve more precise defect
segmentation. Moreover, MCuePush Unet [30] employs a
three-channel image output of MCue module as U-Net input to
improve defect segmentation performance, while FL-SegNet
[31] combines the original SegNet network with a Focal
loss function to segment multiple defects in tunnel lining.
DeepCrack [32], based on SegNet, fuses multi-scale deep
convolution features learned at hierarchical convolution stages
to capture fine crack structures. Finally, PGANet [6] introduces
a pyramid feature aggregation and global context attention net-
work to achieve better defect segmentation performance. The
aforementioned networks for surface defect segmentation can
effectively achieve precise segmentation of specific defects.
However, their network architectures are large and require
high computational resources, making their deployment and
real-time inference at the edge costly. In contrast, the A-
Net proposed in this study employs a specially designed
network architecture and feature extraction module to achieve
a lightweight network structure and real-time inference while
maintaining sufficient defect segmentation performance.

III. A-SHAPED LIGHTWEIGHT AND REAL-TIME NETWORK

A. Overview
As depicted in Fig. 3, the proposed lightweight real-time

industrial defect segmentation network is of A-shaped ar-

chitecture, hence named A-Net. A-Net is comprised of two
distinct parts, namely feature extraction and feature fusion.
During the Feature Extraction stage, the feature maps with
darker colors correspond to higher levels of information,
while in the Feature Fusion stage, feature maps with darker
colors correspond to a greater degree of detailed information
recovery. The feature extraction stage is composed of two
stages: detail extraction and semantic extraction. These stages
employ different stacking modes of down-sampling module
(Down Block) and lightweight feature extraction module
(Light Block and Wide Block). The aim of detail extraction
is to extract low-level detailed information more effectively,
whereas the goal of semantic extraction is to capture high-
level semantic information more precisely. The feature fusion
stage employs alternately stacked up-sampling module (Up
Block) and lightweight feature extraction module (Light Block
and Wide Block) to achieve refined feature recovery. Further,
we aggregate low-level detailed information with high-level
semantic information through a jump connection structure
specially designed for this purpose. Finally, the segmentation
output is obtained through the process of up-sampling, feature
fusion, and seg head.

B. Motivation

To achieve a lightweight network structure capable of real-
time inferencing on edge devices, it is necessary to minimize
the number of parameters and computational complexity of
the network. The computational complexity of the network is
represented by FLOPs (Floating Point Operations).

Industrial defect images present a challenge to semantic
segmentation networks due to the varying sizes and shapes of
defect regions. To address this challenge, we integrate detail
extraction and semantic extraction in the feature extraction
stage and aggregate the extracted information via a jump
connection after up-sampling. This approach enables the net-
work to focus on information of different scales in the image
simultaneously while maintaining a low parameter number and
FLOPs, leading to high-precision semantic segmentation of
industrial surface defects.

When the dataset size is small, deep full convolutional
neural networks are susceptible to the issues of gradient
disappearance and explosion, which can lead to ineffective
convergence. Therefore, we designed a lightweight feature
extraction convolutional operation with a residual connection
structure to address these issues. Additionally, we adopted
different convolutional operation block stacking modes in dif-
ferent feature extraction stages to further expand the receptive
field of the semantic extraction stage. As a result, A-Net
achieves effective extraction of low-level details and high-level
semantic information with an extremely low parameter number
and FLOPs.

Furthermore, to improve the performance of industrial sur-
face defect segmentation and address the issue of indistinct
boundaries between defect and non-defect regions, we have
incorporated a staggered design of up-sampling and convolu-
tion operation blocks in our feature fusion stage. Nevertheless,
this design imposes additional computational overhead. Hence,
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Fig. 3. The architecture of proposed network in this paper.

we have integrated lightweight feature extraction convolution
operations, namely Light Block and Wide Block, in both
feature extraction and feature fusion stages to mitigate the
computational complexity. This approach strikes a balance
between computational efficiency and segmentation accuracy,
enabling our proposed network to achieve high-precision in-
dustrial surface defect segmentation.

C. Feature Extraction

This section presents a detailed description of the Down
Block and two lightweight feature extraction block (Light and
Wide Block). The feature extraction stage is comprised of two
stages: detail extraction and semantic extraction. For the detail
extraction stage, we utilize the stacking of Down Block, Light
Block, and Wide Block. On the other hand, to rapidly expand
the receptive field in the semantic extraction stage, we use the
stacking mode of Down Block, two Light Blocks, and two
Wide Blocks. The various blocks are elaborated below.

1) Down Block

To address the issue of vanishing or exploding gradients
that may arise in deep neural networks, we incorporate
a residual connection architecture within the Down Block.
As input and output sizes vary, both branches necessitate
sampling during down-sampling. For a lightweight design,
we apply point-wise convolution to condense the primary
channel, followed by a 2x2 convolution with a stride of 2
for down-sampling the feature map, and then another point-
wise convolution to expand the channel count. Meanwhile,
the residual channel utilizes max-pooling for down-sampling.
To integrate the distinct information from both branches, we
merge their sampled outputs and apply the PReLU activation
function, yielding the final output of the sampling module.
Fig. 3 illustrates the Down Block structure. Besides, Table
II provides further details of the module setting, where the
opr represents different operations at different stages, the
Input represents input image, the Down and the Up represent
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downsampling module and upsampling module respectively,
the LFEM represents lightweight feature extraction module
(including Light Block, Wide Block and Cat Block), the Cin

represents the number of input channels, the Cm represents
the number of intermediate channels, the Cout represents the
number of output channels, and the Output Size represents the
resolution of output feature graph of each module.

2) Light Block and Wide Block
The feature extraction module is a vital element of a

semantic segmentation neural network, significantly impacting
its training convergence and dataset performance. However,
standard convolution operations involve substantial compu-
tational demands. To maintain a lightweight structure while
enabling the network to extract features from images with an
extensive receptive field, we substitute traditional convolutions
with lightweight convolution operations, such as depthwise
separable convolution, point-wise convolution, and factorized
convolution. This reduction in network parameters diminishes
computational complexity. Although dilated convolution can
expand the receptive field without increasing parameter count
and computational complexity, its inferior computational effi-
ciency results in a higher inference delay; thus, we exclude it
from our network design.

In pursuit of network lightness, we devise two unique
feature extraction modules with varying receptive field sizes.
The first module, dubbed Light Block, consists of a depthwise
separable convolution between two point-wise convolutions
and employs a residual connection. This module, with a
3x3 receptive field, is optimized for computational efficiency.
The second module, termed Wide Block, adopts factorized
convolution (5x1 and 1x5) instead of the traditional 5x5
convolution, enabling a larger 5x5 receptive field. Analogous
to the Light Block, the Wide Block is flanked by two point-
wise convolutions and incorporates a residual connection.
Fig. 3 showcases the specific architectures of these feature
extraction modules.

Our proposed feature extraction module exhibits a sym-
metric channel structure, maintaining an equal number of
input and output channels. The initial point-wise convolution
reduces the channel count to 1/4 of the output channels,
followed by depthwise separable convolution or factorized
convolution with an equal number of input and output channels
to expand the receptive field. Subsequently, the latter point-
wise convolution increases the channel count to achieve the
desired output channel dimension. This channel design ef-
fectively mitigates the computational complexity arising from
large convolution kernels. Table II provides more detailed
channel configurations.

Using an input size of 32x112x112 and an output size of
32x112x112 as an example, with the intermediate channel
count set to 1/4 of the output channel count, we compute
the parameter quantity and FLOPs of the feature extraction
module and compare them to those of a standard convolution
operation. The specific formulas for calculating the parameter
quantity and FLOPs of common convolution operations are as
follows (bias is not considered):

ParamsConv = Kh ×Kw × Ci × Co (1)

FLOPsConv =
2Kh ×Kw − 1

g
× Ci × Fh × Fw × Co (2)

Where, Ci and Co represent the number of input and output
channels for the convolution, respectively. Kh and Kw denote
the height and width of the convolution kernel, while Fh

and Fw represent the height and width of the feature map.
k corresponds to the size of the convolution kernel, and g
stands for the number of convolution groups.

For depthwise separable convolution, it can be considered
as a standard convolution with the number of groups g = Kh×
Kw, and the number of input and output channels being Ci.
Additionally, it includes the standard 1x1 convolution. Thus,
the specific formula for calculating the parameter quantity and
FLOPs is as follows (excluding bias consideration):

ParamsdwConv = Ci × (Kh ×Kw) + Ci × Co (3)

FLOPsdwConv = (2Kh ×Kw − 1)× Fh × Fw × Co

+Ci × Fh × Fw × Co

(4)

Upon calculating the above parameters, we observe that the
3x3 standard convolution operation contains 9.22k parameters
and 115.61M FLOPs, while the Light Block only has 0.75k
parameters and 9.93M FLOPs. Similarly, the 5x5 standard
convolution operation has 25.6k parameters and 309.76M
FLOPs, compared to the Wide Block, which only has 1.25k
parameters and 16.26M FLOPs. Consequently, our designed
feature extraction module significantly reduces the parameter
count and FLOPs while retaining the same receptive field size
as the standard convolution.

Considering feature extraction at multiple scales, our mod-
ule is designed to accommodate receptive fields of 3x3 and
5x5. By utilizing various stacking configurations of feature
extraction modules during different stages of down-sampling
(Detail Extraction and Semantic Extraction), we can effec-
tively control the receptive field size for each pixel in the
feature map at different stages. This approach enables efficient
extraction of both low-level details and high-level semantics
according to our requirements.

Additionally, we employ several strategies to improve the
performance of our module. In particular, we incorporate
the residual connection approach, embed the Dropout layer,
and implement the PReLU (Parametric Rectified Linear Unit)
function for activation before combining the input and out-
put of the feature extraction module. The PReLU activation
function is expressed as follows:

PReLU(xi) =

{
xi

aixi

ifxi > 0
ifxi ≤ 0

(5)

Where, a is the parameter obtained through training.
The residual connection effectively tackles the issues of

gradient explosion or vanishing gradients that can occur in
deep networks, facilitating efficient convergence of the net-
work on small datasets. Incorporating the Dropout layer within
the feature extraction module also helps prevent overfitting
on small datasets. Moreover, the PReLU activation function
introduces increased flexibility to the network without sub-
stantially augmenting the parameter count or computational
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overhead, thus further optimizing the performance of the
feature extraction module.

As mentioned earlier, our two lightweight feature extraction
modules are capable of effectively extracting features from
images at different stages of the network using specific com-
binations.

TABLE II
THE NUMBER OF CHANNELS IN EACH STAGE OF A-NET.

 

Methods MT Parameters FLOPs 

Classical    

FCN 47.66 45.47M 83.61G 

SegNet 65.45 29.44M 160.52G 

PSPNet 69.45 53.32M 201.35G 

DeepLabV3+ 62.20 59.34M 88.63G 

RefineNet 62.59 80.22M 842.74G 

UNet 61.43 31.39M 223.34G 

Swin-UNet - 27.17M 26.41G 

CCNet 62.61 67.69M 77.74G 

PGANet 61.70 51.41M 1649.33G 

LSA-Net 68.46 21.60M 246.40G 

Lightweight    

BiSeNet 44.56 12.40M 21.62G 

BiSeNetV2 48.08 4.95M 9.96G 

STDC 57.73 12.04M 15.54G 

ERFNet - 2.08M 14.74G 

ESNet 69.54 1.66M 13.48G 

ENet 65.05 0.35M 1.94G 

TopFormer 64.94 3.00M 1.22G 

A-Net 69.18 0.39M 2.30G 

 

 

Stage 
Downsampling Upsampling Output Size 

opr inC  mC  outC  opr inC  mC  outC   

0S  Input   3 Seg Head 32 16 1 224×224 

1S  
Down 3 8 32 LFEM 32 8 32 112×112 

LFEM 32 8 32 Up 64 8 32 112×112 

2S  
Down 32 16 64 LFEM 64 16 64 64×64 

LFEM 64 16 64 Up 128 16 64 64×64 

3S  
Down 64 32 128 LFEM 128 32 128 32×32 

LFEM 128 32 128 Up 128 32 128 32×32 

4S  
Down 128 32 128 LFEM 128 32 128 16×16 

LFEM 128 32 128 Up 128 32 128 16×16 

5S  
Down 128 32 128     8×8 

LFEM 128 32 128     8×8 

 

 

 

 

 

 

D. Feature Fusion

During the feature fusion stage, we utilize a stacking con-
figuration consisting of up blocks, light blocks (or cat blocks),
and wide blocks in an interleaved manner to accomplish fine
feature recovery and feature fusion. In the final up-sampling
step, we develop a simple Seg Head to map the up-sampled
features to segmentation output.

1) Up Block
Two prevalent methods for up-sampling are interpolation

up-sampling and deconvolution. To address the issues of
vanishing or exploding gradients in deep networks, we adopt
the residual connection structure in our up block, as detailed
in section 3.3.1. This approach involves creating two branches
using deconvolution and bilinear up-sampling operations, and
implementing channel compression through point-wise con-
volution before deconvolution. By expanding the number of
channels after deconvolution, a lightweight sampling module
is constructed. The outputs of the two branches are then
summed and activated by PReLU. During the up-sampling
process, the number of output channels gradually decreases,
with the number of intermediate channels set at 1/4 of the
output channel count. Table II presents the channel settings.

Moreover, in the up-sampling process, we merge low-level
details with high-level semantics after up-sampling through
a jump connection at 1/4 size of input, as it is the boundary
between the detail extraction stage and the semantic extraction
stage. First, we concatenate the feature map obtained from
up-sampling high-level semantics with the details extracted
during the detail extraction stage. Subsequently, we utilize
lightweight depthwise separable convolution to compress the
channel count and integrate the spatial information across
different channels. This combined feature map is then input
into the Light Block for further feature fusion and extraction

operations. Fig. 3 illustrates the specific architecture of this
process.

2) Seg Head

2×2Conv

Transpose
BN PReLU 1×1Conv BN PReLU 3×3Conv

OutputInput Feature Map Upsampling Map

Fig. 4. Seg head architecture.

In the final up-sampling stage of our network, we have
designed a straightforward segmentation head. This segmen-
tation head consists of a deconvolution layer, a point-wise
convolution layer, and a 3x3 standard convolution layer, as
depicted in Fig. 4. The deconvolution layer is responsible for
up-sampling the feature map, initially half the size of the
input image, while simultaneously reducing the number of
channels. The point-wise convolution layer serves to integrate
spatial information from various channels of the up-sampled
feature map. Lastly, the 3x3 standard convolution layer maps
the feature map into the desired segmentation output, thereby
completing the entire network computation process.

E. Loss Function and training

To further enhance network performance, the loss function
formula used in the training process is as follows:

Lweight(pd, gd)=Ldice(pd, gd) + 0.5× Lbce(pd, gd) (6)

where pd ∈ RH×W denotes the predicted pixel and
gd ∈ RH×W denotes the corresponding pixel of ground-truth.
Additionally, Lbce represents the binary cross-entropy loss,
while Ldice represents the dice loss, which is given as follows:

Ldice(pd, gd) = 1−
2
∑H×W

i pidg
i
d + ε∑H×W

i (pid)
2
+

∑H×W
i (gid)

2
+ ε

(7)

Moreover, we have not employed a complex training method
to train A-Net. Instead, we have utilized a simple gradient
descent method to train A-Net without incorporating any
auxiliary training strategies.

IV. EXPERIMENTS

In this section, we begin by introducing the industrial sur-
face defect dataset, our experimental setup, and the evaluation
metrics employed. Next, we carry out ablative experiments to
examine the impact of our designed components on network
performance. We then perform a comparative analysis of the
performance and network structure lightness of our proposed
method relative to other state-of-the-art algorithms on different
datasets. Lastly, we assess the computational efficiency of our
proposed lightweight networks on the CPU platform, followed
by a comprehensive analysis and comparison of the results.
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A. Datasets, Settings, and Evaluation Metrics

1) Datasets
In this article, we have selected two distinct surface defect

datasets, namely the NEU-DET defect dataset and the DAGM
defect dataset, to substantiate and evaluate the applicability
and generality of our proposed method.

NEU-Seg Dataset: The NEU dataset is a standard dataset
collected by [33] to address the problem of automatic recog-
nition for hot-rolled steel strips. The dataset includes six
types of strip steel plates, comprising patch, crazing, pitted-
surface, inclusion, scratches, and rolled-in scale, with each
surface defect containing 300 images. The original resolution
of the images in the dataset is 200×200, and all have corre-
sponding defect type labels. We selected three surface defects
(inclusion, patches, and scratches) for pixel-level marking. We
then adjusted their resolution to 224×224 and divided them
into training set and test set, containing 250 and 50 images,
respectively, to enable their application to our industrial defect
image segmentation.

DAGM-Seg Dataset: The DAGM dataset [34] is manually
generated and contains multiple types of industrial surface
defect images with an original resolution of 512x512. We
chose categories 7 through 10, encompassing a total of 4
datasets, and then divided them into training set and test set,
containing 250 and 50 images, respectively.

MCSD Dataset: The main challenge in the MCSD dataset
is the complex and changing background. The resolution of
images in this dataset is 512x512, and the training set and test
set contain 886 and 222 images, respectively.

MT Dataset: The MT dataset mainly verify the detection
effect of the network for different defects under the conditions
of uneven illumination, complex background and large shape
differences. The resolution of images is 512x512, and the
training set and test set contain 341 and 51 images, respec-
tively.

2) Setting
Training: To ensure fairness, all models are trained from

scratch. We employ the stochastic gradient descent (SGD)
algorithm with a learning rate of 0.0003 and a momentum of
0.9 to train all models. For the NEU-Seg datasets, we adopt
a batch size of 16, while for the DAGM-Seg, MCSD and
MT datasets, we use a batch size of 4. The weight decay
is set at 0.0001. Moreover, we divide 15% of the training set
into validation and train all networks for 2000 epochs during
training stage.

Data augmentation: Images are randomly rotated by 90°
and randomly flipped during training to expand the training
set and prevent severe overfitting.

Evaluation: When testing network performance, we em-
ploy the simplest and fastest method, which involves directly
loading the test data to assess the performance of every model
after training.

Setup: We conduct experiments using PyTorch 1.9.0, and
all models are evaluated on a single NVIDIA GeForce GTX
1080Ti with CUDA 11.7, CUDNN 8.5, and TensorRT 8.5.3.

3) Evaluation Metrics
In order to evaluate the model performance and complexity

more comprehensively, we use the IoU (Intersection over

Union) index of segmentation results to assess the model
performance and the number of model parameters and FLOPs
to evaluate model complexity and computational consumption.
The IoU is represented as a percentage, with higher IoU values
indicating better model performance. The calculation formula
is as follows:

IoU =
TP

TP + FN + FP
(8)

True Positives (TP) refers to positive predictions that match
the ground truth. False Negatives (FN) represent negative
predictions that do not match the ground truth. False Positives
(FP) denote positive predictions that do not match the ground
truth.

Additionally, the number of model parameters is the sum
of the number of parameters for all operations in the model,
and its unit is typically expressed in megaParams (M). The
calculation formula for the number of parameters of a single
convolution operation is shown in Equation (1). The fewer the
number of model parameters, the lower the model complexity.
The model FLOPs is the sum of FLOPs of all operations
in the model, with the unit generally being gigaFLOPS (G).
The calculation formula for FLOPs of a single convolution
operation is shown in Equation (2). The lower the FLOPs of
the model, the lower the computational consumption. There-
fore, a lightweight model requires that the number of network
parameters and FLOPs be maintained at a low level.

B. Ablative Experiments

In this section, a comprehensive analysis of the lightweight
nature and feature extraction capability of the proposed Light
Block and Wide Block architectures is conducted by replac-
ing them with 3×3 convolution and 5×5 convolution layers.
Subsequently, the jump connection aggregation structure and
the final split header structure are incorporated into the net-
work architecture in a step-by-step manner. By systematically
examining the network’s performance with varying degrees
of ablation and conducting a thorough evaluation of the
number of network parameters and FLOPs, the efficacy and
lightweight advantages of the proposed components are effec-
tively demonstrated. The outcomes of the ablation experiments
are presented in Table III, where the number under Inclusion,
Patches, and Scratches represents IoU (%) of models on
corresponding dataset.

TABLE III
ABLATIVE EXPERIMENTS ON THE NEU-SEG DATASET.

 

 

 

Light 

Block 

Wide 

Block 

Jump 

Connection 

Seg 

Head 
Inclusion Patches Scratches Parameters FLOPs 

    47.13 75.70 55.44 4.41M 3.12G 

√    46.43 76.08 56.10 3.36M 2.39G 

 √   52.71 76.08 55.79 1.43M 1.02G 

√ √   51.28 77.65 54.94 0.38M 0.28G 

√ √ √  56.77 77.04 59.30 0.39M 0.31G 

√ √ √ √ 60.53 78.76 59.51 0.39M 0.44G 
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The results presented in Table III demonstrate that the
proposed A-Net backbone yields commendable segmentation
performance and maintains a low parameter count and FLOPs
simultaneously, even in the absence of specifically designed
lightweight feature extraction modules, jump connections,
and segmentation headers. Upon incorporating the proposed
lightweight feature extraction structure, the model’s parameter
count and FLOPs are reduced by more than 90%, compared
to the ordinary convolutional model, with a slight increase
in performance. This outcome validates the effectiveness of
the lightweight feature extraction module proposed in this
study, which uses special convolutions, dropout, and residual
connection rationally to adapt the network to different indus-
trial surface defect detection datasets. Upon adopting the jump
connection structure, the model’s performance is significantly
improved while only adding a few parameters and FLOPs.

Following the integration of the Seg Head structure pro-
posed in this study, the network’s performance on the NEU-
inclusion dataset is notably enhanced, while a slight per-
formance improvement is observed on other datasets. This
observation substantiates the efficacy of the Seg Head struc-
ture proposed in enhancing the model’s generalization abil-
ity across various datasets. Finally, from the perspective of
model lightness, the A-Net model structure’s parameter count
determined in this study is only 0.39M, and FLOPs are only
0.44G, thereby satisfying the deployment requirements of edge
devices (FLOPs lower than 0.6G).

C. Comparative Experiments
We ended up choosing ten classical segmentation networks

(FCN [3], SegNet [4], PSPNet [7], DeeplabV3+ [35], Re-
fineNet [17], U-Net [5], Swin-Unet [36], CCNet [37], and two
network designed for industrial image segmentation (PGA-Net
[6], LSA-Net [38])), and seven light networks (BiSeNet [9],
BiSeNetV2 [10], STDC [39], ERFNet [16], ESNet [25], ENet
[25], and Topformer [27]) that performs well in natural images
as the baseline network to compare with our network.

1) NEU-Seg Dataset
Table IV presents the performance of each baseline net-

work and the A-Net proposed in this paper on the NEU-Seg
dataset. The number under Inclusion, Patches, and Scratches
represents IoU (%) of models on corresponding dataset, while
“-” represents that the model cannot converge effectively on
the corresponding dataset. Besides, the wave line under the
number shows that the corresponding model ranks second in
this category, while the underline indicates ranking third.

The analysis of various segmentation network performances
in the table reveals that larger models generally achieve higher
IoU scores than smaller models. In comparison with larger
models, the A-Net proposed in this paper achieves the highest
IoU on the NEU-inclusion dataset and is only 1.15% away
from the highest IoU on the NEU-patches dataset. Besides,
the performance of A-Net on the scratches dataset ranks third
among all methods in the table. However, the Swin-Unet is
unable to effectively converge, because of the small datasets.
These results demonstrate that the A-Net proposed in this
paper exhibits excellent performance on the industrial surface
defect dataset.

TABLE IV
PERFORMANCE OF DIFFERENT METHODS AND OUR METHOD ON THE

NEU-SEG DATASET.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods Inclusion Patches Scratches Parameters FLOPs 

Classical      

FCN 52.55 78.78 55.39 45.47M 16.00G 

SegNet 56.61 79.84 58.05 29.44M 30.73G 

PSPNet 54.06 79.80 57.78 53.32M 38.71G 

DeepLabV3+ 57.49 78.34 55.07 59.34M 16.97G 

RefineNet 58.72 79.91 60.02 80.22M 161.30G 

U-Net 58.97 79.55 60.92 31.39M 42.75G 

Swin-Unet - - - 27.17M 5.88G 

CCNet 42.79 75.18 50.27 67.69M 14.88G 

PGA-Net 31.12 66.89 24.91 51.41M 315.69G 

LSA-Net 58.94 79.68 59.20 21.60M 47.16G 

Lightweight      

BiSeNet 54.70 79.13 56.71 12.40M 4.14G 

BiSeNetV2 11.23 57.83 20.16 4.95M 1.91G 

STDC 50.43 76.84 54.74 12.04M 2.97G 

ERFNet 58.80 77.77 33.61 2.08M 2.82G 

ESNet 59.73 78.84 58.71 1.66M 2.58G 

ENet 58.21 78.57 59.43 0.35M 0.37G 

TopFormer 54.56 76.13 53.24 3.00M 0.24G 

A-Net 60.53 78.76 59.51 0.39M 0.44G 

Methods Class7 Class8 Class9 Class10 Parameters FLOPs 

Classical       

FCN 79.16 43.54 74.89 52.70 45.47M 83.61G 

SegNet 80.62 69.40 86.75 73.04 29.44M 160.52G 

PSPNet 81.21 71.00 86.99 72.34 53.32M 201.35G 

DeepLabV3+ 81.09 70.73 88.22 73.89 59.34M 88.63G 

RefineNet 81.06 70.70 87.93 73.73 80.22M 842.74G 

U-Net 82.74 76.16 88.37 77.79 31.39M 223.34G 

Swin-Unet - - - - 27.17M 26.41G 

CCNet 80.75 - 74.68 36.48 67.69M 77.74G 

PGA-Net 81.07 61.76 82.55 65.65 51.41M 1649.33G 

LSA-Net 81.73 75.36 88.00 77.10 21.60M 246.40G 

Lightweight       

BiSeNet 80.64 - - - 12.40M 21.62G 

BiSeNetV2 62.82 - - - 4.95M 9.96G 

STDC 78.93 48.84 84.68 59.15 12.04M 15.54G 

ERFNet 49.87 - - - 2.08M 14.74G 

ESNet 82.02 74.51 88.12 75.36 1.66M 13.48G 

ENet 79.47 - - - 0.35M 1.94G 

TopFormer 80.73 68.37 85.76 72.17 3.00M 1.22G 

A-Net 82.86 75.99 88.03 77.01 0.39M 2.30G 

In terms of network lightweightness, the A-Net proposed
in this paper achieves a remarkable advantage over large
models concerning the number of parameters and FLOPs.
Specifically, A-Net’s parameter quantity is only 1.32% of
SegNet, the network with the minimum parameters among the
large models, and its FLOPs are only 2.75% of the FLOPs of
FCN, the network with the lowest FLOPs among the large
networks. Compared to small models, A-Net’s number of
parameters and FLOPs are only slightly higher than those of
ENet and lower than other small models. Furthermore, it is
evident that the segmentation performance of A-Net surpasses
that of other small models. The A-Net architecture successfully
achieves the design goal of a lightweight network structure,
thereby attaining the best precision-lightweightness balance on
the NEU-Seg dataset.

Fig. 5 displays the visual segmentation outputs of each
comparative network on the NEU-Seg dataset. The results
demonstrate that A-Net not only accomplishes efficient defect
segmentation but also exhibits noteworthy proficiency in de-
tecting defects of diverse scales. Furthermore, A-Net manifests
impressive boundary segmentation capabilities. These accom-
plishments can primarily be attributed to the network backbone
and the lightweight feature extraction module devised by
the authors. This module comprises phased feature extraction
stages and feature fusion stages, which enables the network to
effectively extract and resolve features of varying scales.
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Fig. 5. The visual display of the results of every network on the NEU-Seg Dataset.

2) DAGM-Seg Dataset
Table V presents the performance of each baseline net-

work and the A-Net model proposed in this study, on the
DAGM-Seg dataset. In this table, the number under Class7,
Class8, Class9, and Class10 represents IoU (%) of models
on corresponding dataset, while “-” represents that the model
cannot converge effectively on the corresponding dataset. In
addition, the wave line under the number indicates that the
corresponding model ranks second in this category, while the
underline indicates ranking third.

The convergence performance of the comparison networks
indicates that A-Net exhibits commendable convergence per-
formance like large models and can effectively converge on
the DAGM-Seg dataset even with a limited number of images
(i.e., 250 images). In contrast, most of the small comparative
models and the Swin-Unet are unable to converge effec-
tively on DAGM-class8, DAGM-class9, and DAGM-class10.
Hence, the A-Net model surpasses its smaller counterparts by
demonstrating superior convergence capabilities for datasets
of smaller magnitudes.

Analysis of the performance of various networks, as pre-
sented in the table, reveals that larger models generally
achieve higher IoU values than smaller models. However,
among the models compared, the A-Net proposed in this
study outperforms all others by achieving the highest IoU on
the DAGM-class7 dataset. Additionally, A-Net’s performance
on the DAGM-class8 ranks second among all models in the

table, trailing only the U-Net in the classical model category.
Besides, A-Net’s performance on the DAGM-class8 ranks
third among all models in the table, trailing only the U-Net
and LSA-Net in the classical model category. Finally, the IoU
attained by A-Net on the DAGM-class9 dataset is only 0.34%
lower than the highest IoU recorded. These results attest to
the exceptional performance of the A-Net model on industrial
surface defect datasets.

Fig. 6 displays the visual segmentation outputs of each
comparative network on the DAGM-Seg dataset, except for
networks that can not converge effectively. It is obvious that
the A-Net also has powerful ability on segmenting small
objects.

Considering the extremely low parameter quantity and
FLOPs of A-Net, the proposed A-Net segmentation network
achieves the best precision-lightweight tradeoff on the DAGM-
Seg dataset. This demonstrates the effectiveness of the A-Net
model in addressing the challenges posed by industrial surface
defect segmentation tasks while maintaining a lightweight
architecture suitable for deployment on edge devices.

3) MCSD Dataset
Table VI presents the performance of each baseline network,

as well as the A-Net model proposed in this study, on
the MCSD dataset. In this table, the number under MCSD
represents IoU (%) of models on corresponding dataset, while
“-” represents that the model cannot converge effectively on
the corresponding dataset. Moreover, the wave line under the
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Class 7

Class 8

Class 9

Class 10

CCNet LSA-Net

Image Ground truth FCN SegNet PSPNet
DeepLab

V3+
PGA-NetU-NetRefineNet ESNet A-NetSTDC TopFormer

Class 7

Class 8

Class 9

Class 10

CCNet LSA-Net

Fig. 6. The visual display of the results of every network on the DAGM-Seg Dataset.

TABLE V
PERFORMANCE OF DIFFERENT METHODS AND OUR METHOD ON THE

DAGM-SEG DATASET.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods Inclusion Patches Scratches Parameters FLOPs 

Classical      

FCN 52.55 78.78 55.39 45.47M 16.00G 

SegNet 56.61 79.84 58.05 29.44M 30.73G 

PSPNet 54.06 79.80 57.78 53.32M 38.71G 

DeepLabV3+ 57.49 78.34 55.07 59.34M 16.97G 

RefineNet 58.72 79.91 60.02 80.22M 161.30G 

U-Net 58.97 79.55 60.92 31.39M 42.75G 

Swin-Unet - - - 27.17M 5.88G 

CCNet 42.79 75.18 50.27 67.69M 14.88G 

PGA-Net 31.12 66.89 24.91 51.41M 315.69G 

LSA-Net 58.94 79.68 59.20 21.60M 47.16G 

Lightweight      

BiSeNet 54.70 79.13 56.71 12.40M 4.14G 

BiSeNetV2 11.23 57.83 20.16 4.95M 1.91G 

STDC 50.43 76.84 54.74 12.04M 2.97G 

ERFNet 58.80 77.77 33.61 2.08M 2.82G 

ESNet 59.73 78.84 58.71 1.66M 2.58G 

ENet 58.21 78.57 59.43 0.35M 0.37G 

TopFormer 54.56 76.13 53.24 3.00M 0.24G 

A-Net 60.53 78.76 59.51 0.39M 0.44G 

Methods Class7 Class8 Class9 Class10 Parameters FLOPs 

Classical       

FCN 79.16 43.54 74.89 52.70 45.47M 83.61G 

SegNet 80.62 69.40 86.75 73.04 29.44M 160.52G 

PSPNet 81.21 71.00 86.99 72.34 53.32M 201.35G 

DeepLabV3+ 81.09 70.73 88.22 73.89 59.34M 88.63G 

RefineNet 81.06 70.70 87.93 73.73 80.22M 842.74G 

U-Net 82.74 76.16 88.37 77.79 31.39M 223.34G 

Swin-Unet - - - - 27.17M 26.41G 

CCNet 80.75 - 74.68 36.48 67.69M 77.74G 

PGA-Net 81.07 61.76 82.55 65.65 51.41M 1649.33G 

LSA-Net 81.73 75.36 88.00 77.10 21.60M 246.40G 

Lightweight       

BiSeNet 80.64 - - - 12.40M 21.62G 

BiSeNetV2 62.82 - - - 4.95M 9.96G 

STDC 78.93 48.84 84.68 59.15 12.04M 15.54G 

ERFNet 49.87 - - - 2.08M 14.74G 

ESNet 82.02 74.51 88.12 75.36 1.66M 13.48G 

ENet 79.47 - - - 0.35M 1.94G 

TopFormer 80.73 68.37 85.76 72.17 3.00M 1.22G 

A-Net 82.86 75.99 88.03 77.01 0.39M 2.30G 

number indicates that the corresponding model ranks second
in this category, while the underline indicates ranking third.

From Table VI, compared to the competitive classical net-
work and the network designed for industrial surface defect
detection, our model achieves the best performance with
extremely low parameter quantity. Besides, compared to the
lightweight network model, our model performance is much
higher and the parameter quantity is also relatively low. These
results demonstrate the effectiveness of the A-Net model in
addressing the challenges posed by industrial surface defect
segmentation tasks.

Fig. 7 displays the visual segmentation outputs of each com-
parative network on the MCSD dataset, except for networks
that can not converge effectively. From Fig. 7, our method

TABLE VI
PERFORMANCE OF DIFFERENT METHODS AND OUR METHOD ON THE

MCSD DATASET.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Methods MCSD Parameters FLOPs 

Classical    

FCN 69.51 45.47M 83.61G 

SegNet 74.36 29.44M 160.52G 

PSPNet 72.77 53.32M 201.35G 

DeepLabV3+ 76.00 59.34M 88.63G 

RefineNet 72.88 80.22M 842.74G 

U-Net 73.98 31.39M 223.34G 

Swin-Unet 45.50 27.17M 26.41G 

CCNet 74.53 67.69M 77.74G 

PGA-Net 77.23 51.41M 1649.33G 

LSA-Net 77.69 21.60M 246.40G 

Lightweight    

BiSeNet 68.33 12.40M 21.62G 

BiSeNetV2 72.45 4.95M 9.96G 

STDC 68.30 12.04M 15.54G 

ERFNet - 2.08M 14.74G 

ESNet 71.99 1.66M 13.48G 

ENet 75.54 0.35M 1.94G 

TopFormer 67.27 3.00M 1.22G 

A-Net 78.68 0.39M 2.30G 

shows the best segmentation performance and the highest
recognition ability.

4) MT Dataset
Table VII presents the performance of each baseline net-

work, as well as the A-Net model proposed in this study, on
the MT dataset. The number under MT represents IoU (%)
of models on corresponding dataset, while “-” represents that
the model cannot converge effectively on the corresponding
dataset. Furthermore, the wave line under the number indicates
ranking second and the underline indicates ranking third.

From the table, it can be seen that on the MT dataset,
our lightweight model A-Net can compete with the best
performing model, and has a gap of only 0.36% compared
to the highest performing IoU, which shows that the A-
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Fig. 7. The visual display of the results of every network on the MCSD
Dataset.

TABLE VII
PERFORMANCE OF DIFFERENT METHODS AND OUR METHOD ON THE MT

DATASET.
 

Methods MT Parameters FLOPs 

Classical    

FCN 47.66 45.47M 83.61G 

SegNet 65.45 29.44M 160.52G 

PSPNet 69.45 53.32M 201.35G 

DeepLabV3+ 62.20 59.34M 88.63G 

RefineNet 62.59 80.22M 842.74G 

U-Net 63.24 31.39M 223.34G 

Swin-Unet - 27.17M 26.41G 

CCNet 62.61 67.69M 77.74G 

PGA-Net 61.70 51.41M 1649.33G 

LSA-Net 68.46 21.60M 246.40G 

Lightweight    

BiSeNet 44.56 12.40M 21.62G 

BiSeNetV2 48.08 4.95M 9.96G 

STDC 57.73 12.04M 15.54G 

ERFNet - 2.08M 14.74G 

ESNet 69.54 1.66M 13.48G 

ENet 65.05 0.35M 1.94G 

TopFormer 64.94 3.00M 1.22G 

A-Net 69.18 0.39M 2.30G 

 

 

Stage 
Downsampling Upsampling Output Size 

opr inC  mC  outC  opr inC  mC  outC   

0S  Input   3 Seg Head 32 16 1 224×224 

1S  
Down 3 8 32 LFEM 32 8 32 112×112 

LFEM 32 8 32 Up 64 8 32 112×112 

2S  
Down 32 16 64 LFEM 64 16 64 64×64 

LFEM 64 16 64 Up 128 16 64 64×64 

3S  
Down 64 32 128 LFEM 128 32 128 32×32 

LFEM 128 32 128 Up 128 32 128 32×32 

4S  
Down 128 32 128 LFEM 128 32 128 16×16 

LFEM 128 32 128 Up 128 32 128 16×16 

5S  
Down 128 32 128     8×8 

LFEM 128 32 128     8×8 

 

 

 

 

 

 

Net performs better than many classical models in the table.
Considering the extremely low parameter quantity and FLOPs
of A-Net, the proposed A-Net segmentation network achieves
the best precision-lightweight balance on the MT dataset.

Fig. 8 displays the visual segmentation outputs of each
comparative network on the MT dataset, except for networks
that can not converge effectively. From Fig. 8, it can be seen
that A-Net has excellent segmentation ability for small defects,
which is sufficient to compete with classical network models
and networks designed for industrial surface defect detection.

34
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PGA-NetU-NetRefineNet CCNet BiSeNet
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ESNet ENet A-NetSTDC TopFormer

LSA-Net

Image Ground truth FCN SegNet PSPNet
DeepLab

V3+

PGA-NetU-NetRefineNet CCNet BiSeNet

BiSeNet

V2
ESNet ENet A-NetSTDC TopFormer
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317483

Fig. 8. The visual display of the results of every network on the MT Dataset.

D. Inference Speed Test on CPU

To better simulate model deployment at the industrial
edge and explore the inference speed of the model without
GPU acceleration, we use the Benchmark Python Tool in
OpenVINO [40] to test the inference speed of BiSeNet,
BiSeNetV2, STDC, ERFNet, ESNet, TopFormer, ENet, and
A-Net on two edge devices which are CPU-based platforms
(Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz in win-
dows and Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz in
Ubuntu18.04). The test is set as follows: The input image size
is 3 x 224 x 224, the batch size is 1, and test epoch number
is 5000.
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115.6

300

Fig. 9. Results of inference speed test on edge devices.

The results obtained from the test, as shown in Fig. 9,
demonstrate that the A-Net model proposed in this study
outperforms other models in terms of inference speed on both
Windows and Linux systems. The slower inference speed on
Windows systems can be attributed to the greater number of
irrelevant processes competing for system resources.
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Despite this, the proposed A-Net architecture achieves in-
ference speeds that are several times faster than those of real-
time or lightweight semantic segmentation networks, such as
BiSeNet, BiSeNetV2, ERFNet, and ESNet, when running on
a CPU. Additionally, A-Net approaches the inference speeds
of the lightest network, ENet, on CPU, thereby establishing
its superiority over competing models.

These results confirm the effectiveness of the A-Net model
for deployment on industrial edge devices, where high-speed
inference and lightweight architecture are crucial for real-
time processing and analysis of industrial surface defects. By
outperforming other state-of-the-art models, A-Net proves to
be a suitable solution for addressing the challenges associated
with industrial edge computing.

E. Experiment Conclusion

Based on the performance and inference speed tests con-
ducted in previous sections, along with the analyses of pa-
rameter numbers and FLOPs, and the inference FPS(Frames
Per Second) tests performed on CPU, it is evident that the
A-Net network structure proposed in this study demonstrates
competitive performance on various industrial surface defect
segmentation datasets when compared to classical semantic
segmentation network models.

In addition, A-Net boasts an impressively low parame-
ter count and FLOPs, while also achieving high inference
speeds on CPU platforms. These attributes contribute to the
lightweight nature and computational efficiency of the A-Net
model, making it particularly well-suited for deployment on
edge devices in industrial settings.

In conclusion, the A-Net network structure achieves an
optimal balance between precision and speed compared to the
other networks examined in this study. This balance makes it
a promising solution for real-time detection and analysis of
industrial surface defects, thereby addressing the challenges
associated with industrial edge computing.

V. CONCLUSION

In this paper, we have presented A-Net, a lightweight and
real-time network for industrial surface defect segmentation,
specifically designed to address the challenges arising from
limited data, varying defect sizes, irregular outlines, and subtle
differences between defect and normal areas. The proposed A-
shaped network structure consists of two main components,
feature extraction and feature fusion, efficiently extracting
low-level detail and high-level semantic information while
facilitating the aggregation of information at different levels.

Through the design of lightweight convolution blocks, we
have managed to prevent overfitting, gradient disappearance,
and gradient explosion, making the network suitable for small
datasets. Moreover, A-Net demonstrates competitive perfor-
mance compared to classic large models, such as U-Net,
while significantly reducing the number of parameters and
computational costs and shows high inference speed without
GPU acceleration.

However, in these comparative experiments, though the
A-Net can achieve performance that competes with other

networks, it cannot achieve the highest performance among
all the models on all defect categories, which is the flaw of
our method. In the future, we are going to further improve the
performance of lightweight neural network designed for the
surface defect detection field.

Our work contributes to the ongoing development of ef-
fective and efficient defect segmentation networks, paving
the way for real-world industrial applications with limited
resources. Future research directions include further opti-
mization of the network architecture, exploring additional
lightweight approaches, and investigating the applicability of
A-Net to other domains and tasks that require low-latency and
computationally efficient models.
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